Population pharmacokinetics and exposure-response modeling and simulation for evolocumab in healthy volunteers and patients with hypercholesterolemia

Mita Kuchimanchi, Anita Grover, Maurice G Emery, Ransi Somaratne, Scott M Wasserman, John P Gibbs, Sameer Doshi, Mita Kuchimanchi, Anita Grover, Maurice G Emery, Ransi Somaratne, Scott M Wasserman, John P Gibbs, Sameer Doshi

Abstract

Evolocumab, a novel human monoclonal antibody, inhibits proprotein convertase subtilisin/kexin type 9, a protein that targets low-density lipoprotein-cholesterol (LDL-C) receptors for the treatment of hyperlipidemia. The primary objective of this analysis was to characterize the population pharmacokinetics (popPK) and exposure-response relationship of evolocumab to assess if dose adjustment is needed across differing patient populations. Data were pooled for 5474 patients in 11 clinical studies who received evolocumab doses of 7-420 mg at various frequencies, either intravenously or subcutaneously. Evolocumab area under concentration-time curve from 8 to 12 weeks (AUCwk8-12) was simulated for individuals using the popPK model and was used to predict the LDL-C response in relation to AUCwk8-12. Evolocumab was eliminated through nonspecific (linear) and target-mediated (nonlinear) clearance. PopPK parameters and associated variabilities of evolocumab were similar to those of other monoclonal antibodies. The exposure-response model predicted a maximal 66% reduction in LDL-C from baseline to the mean of weeks 10 and 12 for doses of evolocumab 140 mg subcutaneously every 2 weeks or 420 mg subcutaneously once monthly. After inclusion of statistically significant covariates in an uncertainty-based simulation, LDL-C reduction from baseline at the mean of weeks 10 and 12 was predicted to be within 74% to 126% of the reference patient for all simulated patient groups. Evolocumab had nonlinear pharmacokinetics. The range of responses based on intrinsic and extrinsic factors was not predicted to be sufficiently different from the reference patient to warrant evolocumab dose adjustment.

Keywords: Evolocumab; Exposure–response; Hypercholesterolemia; Monoclonal antibody; PCSK9; Population pharmacokinetics.

Conflict of interest statement

Conflicts of interest

M. Kuchimanchi, S.M. Wasserman, and S. Doshi are employees of and stockholders in Amgen Inc. R. Somaratne and J.P. Gibbs are identified as inventors on at least one pending patent application owned by Amgen Inc. relating to evolocumab. S.M. Wasserman appears on a number of pending patents owned by Amgen Inc. relating to evolocumab and PCSK9 inhibition. J.P. Gibbs, A. Grover, and M.G. Emery were employees of and stockholders in Amgen at the time this work was completed. J.P. Gibbs is currently employed by AbbVie, Inc. A. Grover is currently employed by BioMarin Pharmaceutical Inc. M.G. Emery is currently employed by Seattle Genetics. R. Somaratne is a stockholder of Amgen, was employed by Amgen at the time this work was completed, and is currently employed by NGM Biopharmaceuticals.

Ethical approval

All studies were conducted in accordance with principles for human experimentation as defined in the Declaration of Helsinki and International Conference on Harmonization Good Clinical Practice guidelines, and approved by the relevant institutional review boards.

Informed consent

Informed consent was obtained from each study participant after they were told of the potential risks and benefits as well as the investigational nature of the study.

Figures

Fig. 1
Fig. 1
Evolocumab pharmacokinetic and exposure–response model. a Pharmacokinetic model; ka absorption rate constant; kel elimination rate constant; km concentration of half-maximal nonlinear clearance; Vmax nonlinear clearance capacity. b Exposure–response model; Eff LDL-C lowering effect; Emax theoretical maximum evolocumab response for the average of weeks 10 and 12; EC50 ((µg/mL) * day) AUCwk8–12 (Q2W) to achieve half-maximal response; REG regimen effect on EC50 with an indicator variable, i, with values of 0 or 1 was used indicate Q2W or QM regimens
Fig. 2
Fig. 2
Observed and model-predicted serum evolocumab concentrations. Solid line: line of unity; dashed line: locally weighted scatterplot smoothing (LOWESS); PRED population predicted concentration; IPRED individual predicted concentration
Fig. 3
Fig. 3
PK and PD individual model fits for representative patients. Points: observations; solid line: population prediction (PRED); dashed line: individual prediction (IPRED)
Fig. 4
Fig. 4
Time-course of model-predicted and observed serum evolocumab concentrations after doses of 140 mg SC Q2W (6 doses) and 420 mg SC QM (3 doses). Simulations were performed (number of trials = 100) on the entire dataset. Dots: observed evolocumab serum concentrations. Panels a, b, and c: blue shaded area: 90% prediction interval of simulated evolocumab serum concentration–time profile, and red line is predicted median, whereas black line is observed median. Panel d: The solid red lines represent the 95th (upper red line), 50th (middle red line), and 5th (lower red line) percentiles of the observed prediction-corrected serum concentration. The observed prediction-corrected plasma concentrations are represented by grey circles. The black lines (upper: 95th, middle: 50th, and lower: 5th) represent the simulation-based prediction, and the surrounding semitransparent blue field represents a simulation-based 90% prediction interval for the corresponding simulation-based prediction intervals. Q2W once every 2 weeks; QM once monthly; SC subcutaneous
Fig. 5
Fig. 5
AUC week 8–12 versus body weight for all patients by sex
Fig. 6
Fig. 6
Observed data and 90% prediction interval for week 10 and 12 mean calculated LDL-C for phase 2 studies by weeks 8–12 evolocumab-predicted AUC. Prediction of the mean week 10 and 12 calculated LDL-C concentration, in percentage change from baseline, 50th (solid line) and 5th and 95th (dashed lines) percentiles. Simulations were performed for n = 2000 patients. Points: observed individual mean of weeks 10 and 12 LDL-C measurements. Vertical line: mean observed AUCwk8–12 in phase 2. %CFB percentage change from baseline; AMG 145 evolocumab; AUC area under the concentration–time curve; LDL-C low-density lipoprotein-cholesterol; Q2W once every 2 weeks; QM once monthly
Fig. 7
Fig. 7
Forest plots of covariate effects with 95% CI for evolocumab AUCwk8–12 for 140 mg SC Q2W and 420 mg SC QM. The statin covariate represents patients only taking a statin and no other concomitant medication. The statin + Ezet covariate includes all patients on Ezet, regardless of concomitant medications. For patients in the pharmacokinetics model, 93% of those taking Ezet were also taking a statin; thus, the Ezet covariate most generally represents a combination (statin + Ezet) therapy covariate. AUC area under the time-concentration curve; CI confidence interval; Ezet ezetimibe; PCSK9 BL proprotein convertase subtilisin/kexin type 9 baseline (low, 4.8 nM [355 ng/mL]; high, 8.1 nM [599 ng/mL]); Q2W once every 2 weeks; QM once monthly; SC subcutaneous
Fig. 8
Fig. 8
Forest plots of covariate effects with 95% CI for evolocumab week 10 and 12 mean calculated LDL-C lowering for 140 mg SC Q2W and 420 mg SC QM. CI confidence interval; Ezet ezetimibe; HeFH heterozygous familial hypercholesterolemia; LDL-C low-density lipoprotein-cholesterol; PCSK9 BL proprotein convertase subtilisin/kexin type 9 baseline (low, 4.8 nM [355 ng/mL]; high, 8.1 nM [599 ng/mL]); Q2W once every 2 weeks; QM once monthly; SC subcutaneous

References

    1. Cholesterol Treatment Trialists (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753):1670–1681. 10.1016/s0140-6736(10)61350-5
    1. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–438. doi: 10.1161/ATVBAHA.108.179564.
    1. Lagace TA. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol. 2014;25(5):387–393. doi: 10.1097/MOL.0000000000000114.
    1. Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290(18):11649–11662. doi: 10.1074/jbc.M114.611988.
    1. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–398. doi: 10.1194/jlr.M700437-JLR200.
    1. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24(8):1454–1459. doi: 10.1161/01.ATV.0000134621.14315.43.
    1. Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, Lahaye SA, Mbikay M, Ooi TC, Chretien M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;7:22. doi: 10.1186/1476-511X-7-22.
    1. Horton JD, Cohen JC, Hobbs HH. PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res. 2009;50(Suppl):S172–177. doi: 10.1194/jlr.R800091-JLR200.
    1. Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow WG, Thibault ST, Zhang R, Cao P, Yang XP, Yu T, Lu M, Retter MW, Kwon G, Henne K, Pan O, Tsai MM, Fuchslocher B, Yang E, Zhou L, Lee KJ, Daris M, Sheng J, Wang Y, Shen WD, Yeh WC, Emery M, Walker NP, Shan B, Schwarz M, Jackson SM. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106(24):9820–9825. doi: 10.1073/pnas.0903849106.
    1. Cicero AF, Colletti A, Borghi C. Profile of evolocumab and its potential in the treatment of hyperlipidemia. Drug Des Devel Ther. 2015;9:3073–3082. doi: 10.2147/DDDT.S67498.
    1. Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, Crispino CP, Smirnakis KV, Emery MG, Colbert A, Gibbs JP, Retter MW, Cooke BP, Uy ST, Matson M, Stein EA. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60(19):1888–1898. doi: 10.1016/j.jacc.2012.08.986.
    1. Gibbs JP, Doshi S, Kuchimanchi M, Grover A, Emery MG, Dodds MG, Gibbs MA, Somaratne R, Wasserman SM, Blom D. Impact of target-mediated elimination on the dose and regimen of evolocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9) J Clin Pharmacol. 2017;57(5):616–626. doi: 10.1002/jcph.840.
    1. Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtsonis K, Kim JB, Scott R, Wasserman SM, Stein EA, DESCARTES Investigators A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370(19):1809–1819. doi: 10.1056/NEJMoa1316222.
    1. Blom DJ, Djedjos CS, Monsalvo ML, Bridges I, Wasserman SM, Scott R, Roth E. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117(8):731–741. doi: 10.1161/CIRCRESAHA.115.307071.
    1. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, Liu T, Mohanavelu S, Hoffman EB, McDonald ST, Abrahamsen TE, Wasserman SM, Scott R, Sabatine MS, LAPLACE-TIMI 57 Investigators Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007–2017. doi: 10.1016/S0140-6736(12)61770-X.
    1. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim JB, Scott R, Wasserman SM, Bays H, MENDEL-2 Investigators Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2531–2540. doi: 10.1016/j.jacc.2014.03.018.
    1. Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, Bolognese M, Wasserman SM. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995–2006. doi: 10.1016/S0140-6736(12)61771-1.
    1. Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, Stein EA. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation. 2012;126(20):2408–2417. doi: 10.1161/CIRCULATIONAHA.112.144055.
    1. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA, TESLA Investigators Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–350. doi: 10.1016/S0140-6736(14)61374-X.
    1. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, Somaratne R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R, LAPLACE-2 Investigators Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870–1882. doi: 10.1001/jama.2014.4030.
    1. Stein EA, Giugliano RP, Koren MJ, Raal FJ, Roth EM, Weiss R, Sullivan D, Wasserman SM, Somaratne R, Kim JB, Yang J, Liu T, Albizem M, Scott R, Sabatine MS, PROFICIO Investigators Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. 2014;35(33):2249–2259. doi: 10.1093/eurheartj/ehu085.
    1. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, Bruckert E, Cho L, Dent R, Knusel B, Xue A, Scott R, Wasserman SM, Rocco M, GAUSS-2 Investigators Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541–2548. doi: 10.1016/j.jacc.2014.03.019.
    1. Sullivan D, Olsson AG, Scott R, Kim JB, Xue A, Gebski V, Wasserman SM, Stein EA. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308(23):2497–2506. doi: 10.1001/jama.2012.25790.
    1. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989-2009) Ellicott City MD: Icon Development Solutions; 2009.
    1. Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–591. doi: 10.1007/s10928-008-9102-8.
    1. Bauer RJ (2011) NONMEM users guide: introduction to NONMEM 7.2.0. Icon Development Solutions, Ellicott City
    1. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401–421. doi: 10.1007/s10928-008-9094-4.
    1. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504. doi: 10.1023/A:1012299115260.
    1. Byon W, Fletcher CV, Brundage RC. Impact of censoring data below an arbitrary quantification limit on structural model misspecification. J Pharmacokinet Pharmacodyn. 2008;35(1):101–116. doi: 10.1007/s10928-007-9078-9.
    1. Gastonguay MR (2004) A full model estimation approach for covariate effects: inference based on clinical importance and estimation precision. AAPS J 6(Suppl1):Abstract W4354
    1. O’Brien L, Westwood P, Gao L, Heathman M. Population pharmacokinetic meta-analysis of ramucirumab in cancer patients. Br J Clin Pharmacol. 2017;83(12):2741–2751. doi: 10.1111/bcp.13403.
    1. Ahamadi M, Freshwater T, Prohn M, Li CH, de Alwis DP, de Greef R, Elassaiss-Schaap J, Kondic A, Stone JA. Model-based characterization of the pharmacokinetics of pembrolizumab: a humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst Pharmacol. 2017;6(1):49–57. doi: 10.1002/psp4.12139.
    1. Yao Z, Hu C, Zhu Y, Xu Z, Randazzo B, Wasfi Y, Chen Y, Sharma A, Zhou H. Population pharmacokinetic modeling of guselkumab, a human IgG1λ monoclonal antibody targeting IL-23, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2018;58(5):613–627. doi: 10.1002/jcph.1063.
    1. Kasichayanula S, Grover A, Emery MG, Gibbs MA, Somaratne R, Wasserman SM, Gibbs JP. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018
    1. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, Murphy SA, Kuder JF, Gouni-Berthold I, Lewis BS, Handelsman Y, Pineda AL, Honarpour N, Keech AC, Sever PS, Pedersen TR. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–950. doi: 10.1016/S2213-8587(17)30313-3.
    1. Sattar N, Preiss D, Robinson JG, Djedjos CS, Elliott M, Somaratne R, Wasserman SM, Raal FJ. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol. 2016;4(5):403–410. doi: 10.1016/S2213-8587(16)00003-6.
    1. Sattar N, Toth PP, Blom DJ, Koren MJ, Soran H, Uhart M, Elliott M, Cyrille M, Somaratne R, Preiss D. Effect of the proprotein convertase subtilisin/kexin type 9 inhibitor evolocumab on glycemia, body weight, and new-onset diabetes mellitus. Am J Cardiol. 2017;120(9):1521–1527. doi: 10.1016/j.amjcard.2017.07.047.
    1. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53(12):2515–2524. doi: 10.1194/jlr.R026658.
    1. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82(1):17–20. doi: 10.1038/sj.clpt.6100241.
    1. Bergsma TT, Knebel W, Fisher J, Gillespie WR, Riggs MM, Gibiansky L, Gastonguay MR. Facilitating pharmacometric workflow with the metrumrg package for R. Comput Methods Programs Biomed. 2013;109(1):77–85. doi: 10.1016/j.cmpb.2012.08.009.
    1. Menon-Andersen D, Yu B, Madabushi R, Bhattaram V, Hao W, Uppoor RS, Mehta M, Lesko L, Temple R, Stockbridge N, Laughren T, Gobburu JV. Essential pharmacokinetic information for drug dosage decisions: a concise visual presentation in the drug label. Clin Pharmacol Ther. 2011;90(3):471–474. doi: 10.1038/clpt.2011.149.
    1. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–659. doi: 10.2165/11535960-000000000-00000.
    1. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol. 2005;45(4):468–476. doi: 10.1177/0091270004272731.
    1. Xu Z, Vu T, Lee H, Hu C, Ling J, Yan H, Baker D, Beutler A, Pendley C, Wagner C, Davis HM, Zhou H. Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol. 2009;49(9):1056–1070. doi: 10.1177/0091270009339192.
    1. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, Yeilding N, Davis HM, Zhou H. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49(2):162–175. doi: 10.1177/0091270008329556.
    1. Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem. 2012;3(4):73–92. doi: 10.4331/wjbc.v3.i4.73.
    1. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558. doi: 10.1038/clpt.2008.170.
    1. Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, Roy S. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin Pharmacokinet. 2012;51(6):e1–e18. doi: 10.2165/11599820-000000000-00000.
    1. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR. Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm. 1999;27(4):397–420. doi: 10.1023/A:1020917122093.
    1. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63(5):548–561. doi: 10.1111/j.1365-2125.2006.02803.x.
    1. Kovarik JM, Nashan B, Neuhaus P, Clavien PA, Gerbeau C, Hall ML, Korn A. A population pharmacokinetic screen to identify demographic-clinical covariates of basiliximab in liver transplantation. Clin Pharmacol Ther. 2001;69(4):201–209. doi: 10.1067/mcp.2001.114887.
    1. Mondick JT, Gibiansky L, Gastonguay MR, Veal GJ, Barrett JS (2006) Acknowledging parameter uncertainty in the simulation-based design of an actinomycin-D pharmacokinetic study in pediatric patients with Wilms’ tumor or rhabdomyosarcoma. Paper presented at the 15th Meeting of Population Approach Group Europe, Brugge/Bruges, Belgium, June 14–16

Source: PubMed

3
Abonner