Maximal strength training in patients with inflammatory rheumatic disease: implications for physical function and quality of life

Håvard Haglo, Ole Kristian Berg, Jan Hoff, Jan Helgerud, Eivind Wang, Håvard Haglo, Ole Kristian Berg, Jan Hoff, Jan Helgerud, Eivind Wang

Abstract

Purpose: Patients with inflammatory rheumatic disease (IRD) have attenuated muscle strength in the lower extremities, resulting in impaired physical function and quality of life. Although maximal strength training (MST), applying heavy resistance, is documented to be a potent countermeasure for such attenuation, it is uncertain if it is feasible in IRD given the pain, stiffness, and joint swelling that characterize the population.

Methods: 23 patients with IRD (49 ± 13 years; 20 females/3 males), diagnosed with spondyloarthritis, rheumatoid arthritis, or systemic lupus erythematosus, were randomized to MST or a control group (CG). The MST group performed four × four repetitions dynamic leg press two times per week for 10 weeks at ~ 90% of one repetition maximum (1RM). Before and after training 1RM, rate of force development (RFD), and health-related quality of life (HRQoL) were measured.

Results: Session attendance in the MST group was 95%, of which 95% conducted according to MST protocol. Furthermore, MST increased 1RM (29 ± 12%, p = 0.001) and early and late phase RFD (33-76%, p < 0.05). All improvements were different from the CG (p < 0.05). MST also resulted in HRQoL improvements in the dimensions; physical functioning, general health, and vitality (p < 0.05). Physical functioning was associated with 1RM (rho = 0.55, p < 0.01) and early phase RFD (rho = 0.53-0.71, p < 0.01; different from CG p < 0.05).

Conclusions: Despite being characterized by pain, stiffness, and joint swelling, patients with IRD appear to tolerate MST well. Given the improvements in 1RM, RFD, and HRQoL MST should be considered as a treatment strategy to counteract attenuated muscle strength, physical function, and HRQoL.

Trial registration: ClinicalTrials.gov, NCT04998955, retrospectively registered.

Keywords: Heavy resistance training; One repetition maximum; Rate of force development; Rehabilitation; Rheumatoid arthritis.

Conflict of interest statement

The authors declare that they have no conflicts of interest regarding the publication of this paper.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Leg press maximal strength before and after 10 weeks of maximal strength training (MST). 1RM, one repetition maximum. Data presented as mean with 95% confidence intervals and individual responses for interpretation. ***p = 0.001; significant within group difference from pretraining (Wilcoxon signed rank test). ###p < 0.001; significant difference between groups from pre- to post-test (Mann–Whitney U test)
Fig. 2
Fig. 2
Percentage change improvement in time course of leg press rate of force development (RFD) from pre- to post-training. MST, maximal strength training. Data presented as mean and 95% confidence intervals for interpretation. **p < 0.01; significant within group difference from pretraining (Wilcoxon signed rank test). ##p < 0.01, ###p ≤ 0.001; significant difference between groups from pre- to post-test (Mann–Whitney U test)
Fig. 3
Fig. 3
Association (Spearman rank correlation coefficient; rho) between pre- to postintervention differences in the dimension physical functioning (PF) from Rand 36 for (A) one repetition maximum (1RM) and (B) rate of force development (RFD) 0–100 ms. MST, maximal strength training group (n = 13) and Control group (n = 10). Data points marked “ × ” indicate two overlapping identical within group values

References

    1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985) 2002;93(4):1318–1326. doi: 10.1152/japplphysiol.00283.2002.
    1. Andersen LL, Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96(1):46–52. doi: 10.1007/s00421-005-0070-z.
    1. Andersen LL, Andersen JL, Zebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):e162–169. doi: 10.1111/j.1600-0838.2009.00933.x.
    1. Andrews JS, Trupin L, Schmajuk G, Barton J, Margaretten M, Yazdany J, Yelin EH, Katz PP. Muscle strength, muscle mass, and physical disability in women with systemic lupus erythematosus. Arthritis Care Res (hoboken) 2015;67(1):120–127. doi: 10.1002/acr.22399.
    1. Baillet A, Vaillant M, Guinot M, Juvin R, Gaudin P. Efficacy of resistance exercises in rheumatoid arthritis: meta-analysis of randomized controlled trials. Rheumatology (oxford) 2012;51(3):519–527. doi: 10.1093/rheumatology/ker330.
    1. Balsamo S, da Mota LM, de Carvalho JF, Nascimento Dda C, Tibana RA, de Santana FS, Moreno RL, Gualano B, dos Santos-Neto L. Low dynamic muscle strength and its associations with fatigue, functional performance, and quality of life in premenopausal patients with systemic lupus erythematosus and low disease activity: a case-control study. BMC Musculoskelet Disord. 2013;14:263. doi: 10.1186/1471-2474-14-263.
    1. Barrett-O'Keefe Z, Helgerud J, Wagner PD, Richardson RS. Maximal strength training and increased work efficiency: contribution from the trained muscle bed. J Appl Physiol (1985) 2012;113(12):1846–1851. doi: 10.1152/japplphysiol.00761.2012.
    1. Berg OK, Kwon OS, Hureau TJ, Clifton HL, Thurston T, Le Fur Y, Jeong EK, Amann M, Richardson RS, Trinity JD, Wang E, Layec G. Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Exp Gerontol. 2018;111:154–161. doi: 10.1016/j.exger.2018.07.013.
    1. CeŠeiko R, Thomsen SN, Tomsone S, EglĪtis J, Vetra A, Srebnijs A, Timofejevs M, Purmalis E, Wang E. Heavy resistance training in breast cancer patients undergoing adjuvant therapy. Med Sci Sports Exerc. 2020;52(6):1239–1247. doi: 10.1249/mss.0000000000002260.
    1. Cotter JA, Chaudhari AM, Jamison ST, Devor ST. Knee joint kinetics in relation to commonly prescribed squat loads and depths. J Strength Cond Res. 2013;27(7):1765–1774. doi: 10.1519/JSC.0b013e3182773319.
    1. Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114(6):1239–1249. doi: 10.1007/s00421-014-2855-4.
    1. Fimland MS, Helgerud J, Gruber M, Leivseth G, Hoff J. Functional maximal strength training induces neural transfer to single-joint tasks. Eur J Appl Physiol. 2009;107(1):21–29. doi: 10.1007/s00421-009-1096-4.
    1. Fongen C, Sveaas SH, Dagfinrud H. Barriers and facilitators for being physically active in patients with ankylosing spondylitis: a cross-sectional comparative study. Musculoskelet Care. 2015;13(2):76–83. doi: 10.1002/msc.1088.
    1. Grgic J, Lazinica B, Schoenfeld BJ, Pedisic Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: a systematic review. Sports Med Open. 2020;6(1):31. doi: 10.1186/s40798-020-00260-z.
    1. Häkkinen A, Hannonen P, Häkkinen K. Muscle strength in healthy people and in patients suffering from recent-onset inflammatory arthritis. Br J Rheumatol. 1995;34(4):355–360. doi: 10.1093/rheumatology/34.4.355.
    1. Häkkinen A, Mälkiä E, Häkkinen K, Jäppinen I, Laitinen L, Hannonen P. Effects of detraining subsequent to strength training on neuromuscular function in patients with inflammatory arthritis. Br J Rheumatol. 1997;36(10):1075–1081. doi: 10.1093/rheumatology/36.10.1075.
    1. Hartmann H, Wirth K, Klusemann M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013;43(10):993–1008. doi: 10.1007/s40279-013-0073-6.
    1. Heggelund J, Fimland MS, Helgerud J, Hoff J. Maximal strength training improves work economy, rate of force development and maximal strength more than conventional strength training. Eur J Appl Physiol. 2013;113(6):1565–1573. doi: 10.1007/s00421-013-2586-y.
    1. Helgerud J, Karlsen T, Kim WY, Høydal KL, Støylen A, Pedersen H, Brix L, Ringgaard S, Kværness J, Hoff J. Interval and strength training in CAD patients. Int J Sports Med. 2011;32(1):54–59. doi: 10.1055/s-0030-1267180.
    1. Izquierdo M, Aguado X, Gonzalez R, López JL, Häkkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol. 1999;79(3):260–267. doi: 10.1007/s004210050504.
    1. Karstensen JK, Primdahl J, Andersson MLE, Christensen JR, Bremander A. Lifestyle factors in patients with rheumatoid arthritis-a cross-sectional study on two Scandinavian cohorts. Clin Rheumatol. 2021 doi: 10.1007/s10067-021-05905-2.
    1. Kellis E. Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech (bristol, Avon) 2001;16(3):229–236. doi: 10.1016/s0268-0033(00)00084-x.
    1. Kittilsen HT, Goleva-Fjellet S, Freberg BI, Nicolaisen I, Støa EM, Bratland-Sanda S, Helgerud J, Wang E, Sæbø M, Støren Ø. Responses to maximal strength training in different age and gender groups. Front Physiol. 2021;12:636972. doi: 10.3389/fphys.2021.636972.
    1. Kosinski M, Zhao SZ, Dedhiya S, Osterhaus JT, Ware JE., Jr Determining minimally important changes in generic and disease-specific health-related quality of life questionnaires in clinical trials of rheumatoid arthritis. Arthritis Rheum. 2000;43(7):1478–1487. doi: 10.1002/1529-0131(200007)43:7<1478::Aid-anr10>;2-m.
    1. Linde L, Sørensen J, Ostergaard M, Hørslev-Petersen K, Hetland ML. Health-related quality of life: validity, reliability, and responsiveness of SF-36, 15D, EQ-5D [corrected] RAQoL, and HAQ in patients with rheumatoid arthritis. J Rheumatol. 2008;35(8):1528–1537.
    1. Madsen OR, Egsmose C. Associations of isokinetic knee extensor and flexor strength with steroid use and walking ability in women with rheumatoid arthritis. Clin Rheumatol. 2001;20(3):207–212. doi: 10.1007/s100670170067.
    1. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091–1116. doi: 10.1007/s00421-016-3346-6.
    1. Marcora S, Casanova F, Williams E, Jones J, Elamanchi R, Lemmey A. Preliminary evidence for cachexia in patients with well-established ankylosing spondylitis. Rheumatology (oxford) 2006;45(11):1385–1388. doi: 10.1093/rheumatology/kel127.
    1. Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U. Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res. 2013;27(10):2879–2886. doi: 10.1519/JSC.0b013e318280d4e2.
    1. Narici MV, Hoppeler H, Kayser B, Landoni L, Claassen H, Gavardi C, Conti M, Cerretelli P. Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand. 1996;157(2):175–186. doi: 10.1046/j.1365-201X.1996.483230000.x.
    1. Ochi A, Ohko H, Hayashi T, Osawa T, Sugiyama Y, Nakamura S, Ibuki S, Ichihashi N. Relationship between balance recovery from a forward fall and lower-limb rate of torque development. J Mot Behav. 2020;52(1):71–78. doi: 10.1080/00222895.2019.1585743.
    1. Perrotta FM, Lories R, Lubrano E. To move or not to move: the paradoxical effect of physical exercise in axial spondyloarthritis. RMD Open. 2021 doi: 10.1136/rmdopen-2020-001480.
    1. Salaffi F, Di Carlo M, Carotti M, Farah S. The patient-reported outcomes thermometer-5-item scale (5T-PROs): validation of a new tool for the quick assessment of overall health status in painful rheumatic diseases. Pain Res Manag. 2018;2018:3496846. doi: 10.1155/2018/3496846.
    1. Samsa G, Edelman D, Rothman ML, Williams GR, Lipscomb J, Matchar D. Determining clinically important differences in health status measures: a general approach with illustration to the health utilities index mark II. Pharmacoeconomics. 1999;15(2):141–155. doi: 10.2165/00019053-199915020-00003.
    1. Schattenkirchner M. Diagnostic methods for evaluation of activity in inflammatory rheumatic disease. Scand J Rheumatol Suppl. 1987;65:63–70. doi: 10.3109/03009748709102178.
    1. Sparks JA. Rheumatoid arthritis. Ann Intern Med. 2019;170(1):Itc1–itc16. doi: 10.7326/aitc201901010.
    1. Sveaas SH, Smedslund G, Hagen KB, Dagfinrud H. Effect of cardiorespiratory and strength exercises on disease activity in patients with inflammatory rheumatic diseases: a systematic review and meta-analysis. Br J Sports Med. 2017;51(14):1065–1072. doi: 10.1136/bjsports-2016-097149.
    1. Sveaas SH, Bilberg A, Berg IJ, Provan SA, Rollefstad S, Semb AG, Hagen KB, Johansen MW, Pedersen E, Dagfinrud H. High intensity exercise for 3 months reduces disease activity in axial spondyloarthritis (axSpA): a multicentre randomised trial of 100 patients. Br J Sports Med. 2020;54(5):292–297. doi: 10.1136/bjsports-2018-099943.
    1. Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98(2):232–236. doi: 10.1111/j.1748-1716.1976.tb00241.x.
    1. Tøien T, Pedersen Haglo H, Unhjem R, Hoff J, Wang E. Maximal strength training: the impact of eccentric overload. J Neurophysiol. 2018;120(6):2868–2876. doi: 10.1152/jn.00609.2018.
    1. Unhjem R, Lundestad R, Fimland MS, Mosti MP, Wang E. Strength training-induced responses in older adults: attenuation of descending neural drive with age. Age (dordr) 2015;37(3):9784. doi: 10.1007/s11357-015-9784-y.
    1. Unhjem R, van den Hoven LT, Nygård M, Hoff J, Wang E. Functional performance with age: the role of long-term strength training. J Geriatr Phys Therapy. 2019;42(3):115–122. doi: 10.1519/jpt.0000000000000141.
    1. Veldhuijzen van Zanten JJ, Rouse PC, Hale ED, Ntoumanis N, Metsios GS, Duda JL, Kitas GD. Perceived barriers, facilitators and benefits for regular physical activity and exercise in patients with rheumatoid arthritis: a review of the literature. Sports Med. 2015;45(10):1401–1412. doi: 10.1007/s40279-015-0363-2.
    1. Vervloesem N, Van Gils N, Ovaere L, Westhovens R, Van Assche D. Are personal characteristics associated with exercise participation in patients with rheumatoid arthritis? A cross-sectional explorative survey. Musculoskelet Care. 2012;10(2):90–100. doi: 10.1002/msc.1003.
    1. von Bothmer MI, Fridlund B. Gender differences in health habits and in motivation for a healthy lifestyle among Swedish university students. Nurs Health Sci. 2005;7(2):107–118. doi: 10.1111/j.1442-2018.2005.00227.x.
    1. Wang E, Helgerud J, Loe H, Indseth K, Kaehler N, Hoff J. Maximal strength training improves walking performance in peripheral arterial disease patients. Scand J Med Sci Sports. 2010;20(5):764–770. doi: 10.1111/j.1600-0838.2009.01014.x.
    1. Wang E, Næss MS, Hoff J, Albert TL, Pham Q, Richardson RS, Helgerud J. Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity. Age (dordr) 2014;36(2):665–676. doi: 10.1007/s11357-013-9596-x.
    1. Wang E, Nyberg SK, Hoff J, Zhao J, Leivseth G, Tørhaug T, Husby OS, Helgerud J, Richardson RS. Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: implications for physical function and fall prevention. Exp Gerontol. 2017;91:64–71. doi: 10.1016/j.exger.2017.02.071.
    1. Ware JE, Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–483. doi: 10.1097/00005650-199206000-00002.
    1. Wretenberg P, Feng Y, Lindberg F, Up A. Joint moments of force and quadriceps muscle activity during squatting exercise. Scand J Med Sci Sports. 1993;3(4):244–250. doi: 10.1111/j.1600-0838.1993.tb00389.x.
    1. Yamada T, Steinz MM, Kenne E, Lanner JT. Muscle weakness in rheumatoid arthritis: the role of Ca(2+) and free radical signaling. EBioMedicine. 2017;23:12–19. doi: 10.1016/j.ebiom.2017.07.023.

Source: PubMed

3
Abonner