Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD)-a pilot study

Anna-Maria Marx, Ann-Christine Ehlis, Adrian Furdea, Martin Holtmann, Tobias Banaschewski, Daniel Brandeis, Aribert Rothenberger, Holger Gevensleben, Christine M Freitag, Yvonne Fuchsenberger, Andreas J Fallgatter, Ute Strehl, Anna-Maria Marx, Ann-Christine Ehlis, Adrian Furdea, Martin Holtmann, Tobias Banaschewski, Daniel Brandeis, Aribert Rothenberger, Holger Gevensleben, Christine M Freitag, Yvonne Fuchsenberger, Andreas J Fallgatter, Ute Strehl

Abstract

In this pilot study near-infrared spectroscopy (NIRS) neurofeedback was investigated as a new method for the treatment of Attention Deficit-/Hyperactivity Disorder (ADHD). Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP) and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus). The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS), to produce positive or negative shifts of SCP (EEG) or to increase or decrease muscular activity (EMG). In each group nine children with ADHD, aged 7-10 years, took part. Changes in parents' ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers' ratings of ADHD symptoms, parents' and teachers' ratings of associated behavioral symptoms, childrens' self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents' ratings. In teachers' ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to consider in the treatment of ADHD.

Keywords: attention deficit hyperactivity disorder (ADHD); children; fNIRS; near-infrared spectroscopy (NIRS); neurofeedback; prefrontal cortex (PFC).

Figures

Figure 1
Figure 1
Trial design of NIRS-, EEG- and EMG- blocks. One NIRS session consisted of 2 feedback blocks each with 12 trials and 1 transfer block with 8 trials. An EEG and EMG session consisted of 3 feedback blocks and 1 transfer block each with 40 trials.
Figure 2
Figure 2
Alignment of the 44 NIRS channels on the cortex surface (Marx, 2014). The eight channels from which the feedback signal was computed are marked with blue (figure buildt with MATLAB based on MNI coordinates, available: http://www.jichi.ac.jp/brainlab/virtual_registration/Result3x5_E.html, Tzourio-Mazoyer et al., ; Tsuzuki et al., 2007).
Figure 3
Figure 3
FBB-ADHS total score of parents’ and teachers’ ratings for all meeasurement points. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.
Figure 4
Figure 4
SDQ total score of parents’ and teachers’ ratings for all measurement points. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.
Figure 5
Figure 5
Medians of reaction times for the TAP subtests Go/NoGo and Flexibility for all measurement points. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.
Figure 6
Figure 6
Standard deviations of reaction times for the TAP subtests Go/NoGo and Flexibility for all measurement points. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.
Figure 7
Figure 7
Commissions in the TAP subtests Go/NoGo and Flexibility for all measurement points. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.
Figure 8
Figure 8
FBB-ADHS total score of parents’ ratings for NIRS-, EEG- and EMG-group at pretest and post test 1. Middle line of boxes = median, box = interquartile range, error bars = minimum respectively maximum, * = significant.

References

    1. Achenbach T. M. (1991). Manual for the Child Behavior Checklist/4–18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.
    1. American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: Author.
    1. Arbeitsgruppe Deutsche Child Behavior Checklist (1998). Elternfragebogen über das Verhalten von Kindern und Jugendlichen; deutsche Bearbeitung der Child Behavior Checklist (CBCL/4–18). Einführung und Anleitung zur Handauswertung, 2. Auflage mit deutschen Normen. Köln: Arbeitsgruppe Kinder-, Jugend- und Familiendiagnostik.
    1. Arnold D. S., O’leary S. G., Wolff L. S., Acker M. M. (1993). The parenting scale: a measure of dysfunctional parenting in discipline situations. Psychol. Assess. 5, 137–144 10.1037//1040-3590.5.2.137
    1. Arns M., de Ridder S., Strehl U., Breteler M., Coenen A. (2009). Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40, 180–189. 10.1177/155005940904000311
    1. Arns M., Heinrich H., Strehl U. (2013). Evaluation of neurofeedback in ADHD: the long and winding road. Biol. Psychol. 95, 108–115. 10.1016/j.biopsycho.2013.11.013
    1. Ayaz H., Shewokis P., Bunce S., Schultheis M., Onaral B. (2009). “Assessment of cognitive neural correlates for a functional near infrared-based brain computer interface system,” in Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, eds Schmorrow D. D., et al. (Berlin Heidelberg: Springer Verlag; ), 699–708.
    1. Barkley R. A. (1997). Behavioral inhibition, sustained attention and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94. 10.1037//0033-2909.121.1.65
    1. Barry R. J., Clarke A. R., Johnstone S. J. (2003a). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. Neurophysiol. 114, 171–183. 10.1016/s1388-2457(02)00362-0
    1. Barry R. J., Johnstone S. J., Clarke A. R. (2003b). A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin. Neurophysiol. 114, 184–198. 10.1016/s1388-2457(02)00363-2
    1. Birbaumer N., Ruiz S., Sitaram R. (2013). Learned regulation of brain metabolism. Trends Cogn. Sci. 17, 295–302. 10.1016/j.tics.2013.04.009
    1. Brennan A. R., Arnsten A. F. (2008). Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function. Ann. N Y Acad. Sci. 1129, 236–245. 10.1196/annals.1417.007
    1. Bulheller S., Häcker H. O. (2006). Coloured Progressive Matrices (CPM). Deutsche Bearbeitung und Normierung nach J. C. Raven. Frankfurt: Harcourt Test Services.
    1. Caria A., Sitaram R., Veit R., Begliomini C., Birbaumer N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol. Psychiatry 68, 425–432. 10.1016/j.biopsych.2010.04.020
    1. Caria A., Veit R., Sitaram R., Lotze M., Welskopf N., Grodd W., et al. . (2007). Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35, 1238–1246. 10.1016/j.neuroimage.2007.01.018
    1. Delmo C., Weiffenbach O., Gabriel M., Poustka F. (2000). 3. Auflage der Deutschen Forschungsversion des K-SADS-PL, Erweitert um ICD-10-Diagnostik. Bern: Huber.
    1. Dickstein S. G., Bannon K., Castellanos F. X., Milham M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J. Child Psychol. Psychiatry 47, 1051–1062. 10.1111/j.1469-7610.2006.01671.x
    1. Döpfner M., Görtz-Dorten A., Lehmkuhl G. (2008). Diagnostik-System für psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV (DISYPS-II). Bern: Huber.
    1. Ehlis A. C., Bähne C. G., Jacob C. P., Herrmann M. J., Fallgatter A. J. (2008). Reduced lateral prefrontal activation in adult patients with attention-deficit/hyperactivity disorder (ADHD) during a working memory task: a functional near-infrared spectroscopy (fNIRS) study. J. Psychiatr Res. 42, 1060–1067. 10.1016/j.jpsychires.2007.11.011
    1. Ehlis A. C., Schneider S., Dresler T., Fallgatter A. J. (2014). Application of functional near-infrared spectroscopy in psychiatry. Neuroimage 85, 478–488. 10.1016/j.neuroimage.2013.03.067
    1. Fallgatter A. J., Strik W. K. (1997). Right frontal activation during the continuous performance test assessed with near-infrared spectroscopy in healthy subjects. Neurosci. Lett. 223, 89–92. 10.1016/s0304-3940(97)13416-4
    1. Gevensleben H., Holl B., Albrecht B., Vogel C., Schlamp D., Kratz O., et al. . (2009). Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. J. Child Psychol. Psychiatry 50, 780–789. 10.1111/j.1469-7610.2008.02033.x
    1. Goodman R. (1997). The strengths and difficulties questionnaire: a research note. J. Child Psychol. Psychiatry 38, 581–586. 10.1111/j.1469-7610.1997.tb01545.x
    1. Guy W. (1976). ECDEU Assessment Manual for Psychopharmacology. Rockville, MD, U.S. Department of Health, Education and Welfare. Available online at: . Accessed on May 13, 2014.
    1. Holtmann M., Pniewski B., Wachtlin D., Wörz S., Strehl U. (2014a). Neurofeedback in children with attention-deficit/hyperactivity disorder (ADHD)—a controlled multicenter study of a non-pharmacological treatment approach. BMC Pediatr. 14:202. 10.1186/1471-2431-14-202
    1. Holtmann M., Sonuga-Barke E., Cortese S., Brandeis D. (2014b). Neurofeedback for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 23, 789–806. 10.1016/j.chc.2014.05.006
    1. Holtmann M., Wörz S., Brandeis D., Banaschewski T., Baumeister S., Bogen T., et al. (2014c). “Neurofeedback in children with ADHD—first results of a controlled multicenter study,” in Poster 3rd Eunethydis International Conference on ADHD.21st - 24th May 2014. Scientific programme (Istanbul, Turkey), 278 (abstract).
    1. Inoue Y., Sakihara K., Gunji A., Ozawa H., Kimiya S., Shinoda H., et al. . (2012). Reduced prefrontal hemodynamic response in children with ADHD during the Go/NoGo task: a NIRS study. Neuroreport 23, 55–60. 10.1097/wnr.0b013e32834e664c
    1. Jourdan Moser S., Cutini S., Weber P., Schroeter M. L. (2009). Right prefrontal brain activation due to stroop interference is altered in attention-deficit hyperactivity disorder—a functional near-infrared spectroscopy study. Psychiatry Res. 173, 190–195. 10.1016/j.pscychresns.2008.10.003
    1. Kaufman J., Birmaher B., Brent D., Rao U. M. A., Flynn C., Moreci P., et al. . (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (k-sads-pl): initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry 36, 980–988. 10.1097/00004583-199707000-00021
    1. Kaufman J., Schweder A. E. (2003). “The schedule for affective disorders and schizophrenia for school age children: present and lifetime version (K-SADS-PL),” in The Comprehensive Handbook of Psychological Assessment (CHOPA), Volume 2: Personality Assessment, eds Hersen M., Segal D. M., Hilsenroth M. (New-York: John Wiley and Sons; ), 247–255.
    1. Martinussen R., Hayden J., Hogg-Johnson S., Tannock R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 44, 377–384. 10.1097/01.chi.0000153228.72591.73
    1. Marx A.-M. (2014). Neurofeedback mittels Nah-Infrarot-Spektroskopie als Behandlungsmöglichkeit für Kinder mit einer Aufmerksamkeitsdefizit/Hyperaktivitätsstörung. Muenchen: Verlag Dr. Hut.
    1. Meisel V., Servera M., Garcia-Banda G., Cardo E., Moreno I. (2013). Neurofeedback and standard pharmacological intervention in ADHD: a randomized controlled trial with six-month follow-up. Biol. Psychol. 94, 12–21. 10.1016/j.biopsycho.2013.04.015
    1. Miller Y. (2001). Erziehung von Kindern im Kindergartenalter: Erziehungsverhalten und Kompetenzüberzeugungen von Eltern und der Zusammenhang zu kindlichen Verhaltensstörungen. Dissertation, TU Braunschweig.
    1. Negoro H., Sawada M., Iida J., Ota T., Tanaka S., Kishimoto T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum. Dev. 41, 193–203. 10.1007/s10578-009-0160-y
    1. Obrig H., Wenzel R., Kohl M., Horst S., Wobst P., Steinbrink J., et al. . (2000). Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int. J. Psychophysiol. 35, 125–142. 10.1016/s0167-8760(99)00048-3
    1. Paloyelis Y., Mehta M. A., Kuntsi J., Asherson P. (2007). Functional MRI in ADHD: a systematic literature review. Expert Rev. Neurother. 7, 1337–1356. 10.1586/14737175.7.10.1337
    1. Raven J. C., Raven J., Court J. H. (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scales. San Antonio, TX: Pearson.
    1. Ravens-Sieberer U. (2003). “Der KINDL®ledR-Fragebogen zur Erfassung der gesundheitsbezogenen Lebensqualität bei Kindern und Jugendlichen—Revidierte Form,” in Diagnostische Verfahren zu Lebensqualität und Wohlbefinden, eds Schumacher J., Klaiberg A., Brähler E. (Göttingen: Hogrefe; ), 184–188.
    1. Rothenberger A., Woerner W. (2004). Strengths and Difficulties Questionnaire (SDQ)-evaluations and applications. Eur. Child Adoles. Psychiatry 13, II1–II2. 10.1007/s00787-004-2001-7
    1. Strangman G., Culver J. P., Thompson J. H., Boas D. A. (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17, 719–731. 10.1006/nimg.2002.1227
    1. Tsuzuki D., Jurcak V., Singh A. K., Okamoto M., Watanabe E., Dan I. (2007). Virtual spatial registration of stand-alone fNIRS data to MNI space. Neuroimage 34, 1506–1518. 10.1016/j.neuroimage.2006.10.043
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. . (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289. 10.1006/nimg.2001.0978
    1. Weber P., Lütschg J., Fahnenstich H. (2005). Cerebral hemodynamic changes in response to an executive function task in children with attention-deficit hyperactivity disorder measured by near-infrared spectroscopy. J. Dev. Behav. Pediatr. 26, 105–111. 10.1097/00004703-200504000-00005
    1. Weiskopf N., Scharnowski F., Veit R., Goebel R., Birbaumer N., Mathiak K. (2004). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J. Physiol. Paris 98, 357–373. 10.1016/j.jphysparis.2005.09.019
    1. Weiskopf N., Veit R., Erb M., Mathiak K., Grodd W., Goebel R., et al. . (2003). Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19, 577–586. 10.1016/s1053-8119(03)00145-9
    1. Willcutt E. G., Doyle A. E., Nigg J. T., Faraone S. V., Pennington B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol. Psychiatry 57, 1336–1346. 10.1016/j.biopsych.2005.02.006
    1. Xiao T., Xiao Z., Ke X., Hong S., Yang H., Su Y., et al. . (2012). Response inhibition impairment in high functioning autism and attention deficit hyperactivity disorder: evidence from near-infrared spectroscopy data. PLoS One 7:e46569. 10.1371/journal.pone.0046569
    1. Yamamoto T., Kato T. (2002). Paradoxical correlation between signal in functional magnetic response imaging and deoxygenated haemoglobin content in capillaries: a new theoretical explanation. Phys. Med. Biol. 47, 1121–1141 10.1088/0031-9155/47/7/309
    1. Yasumura A., Inagaki M., Hiraki K. (2014). Relationship between neural activity and executive function: an NIRS study. ISRN Neurosci. 2014:734952. 10.1155/2014/734952
    1. Zimmermann P., Fimm B. (2009). TAP—Testbatterie zur Aufmerksamkeitsprüfung (Testbattery for Attentional Performance). 2.2 Edn. Herzogenrath, Germany: Psytest.

Source: PubMed

3
Abonner