Case Report of Dual-Site Neurostimulation and Chronic Recording of Cortico-Striatal Circuitry in a Patient With Treatment Refractory Obsessive Compulsive Disorder

Sarah T Olsen, Ishita Basu, Mustafa Taha Bilge, Anish Kanabar, Matthew J Boggess, Alexander P Rockhill, Aishwarya K Gosai, Emily Hahn, Noam Peled, Michaela Ennis, Ilana Shiff, Katherine Fairbank-Haynes, Joshua D Salvi, Cristina Cusin, Thilo Deckersbach, Ziv Williams, Justin T Baker, Darin D Dougherty, Alik S Widge, Sarah T Olsen, Ishita Basu, Mustafa Taha Bilge, Anish Kanabar, Matthew J Boggess, Alexander P Rockhill, Aishwarya K Gosai, Emily Hahn, Noam Peled, Michaela Ennis, Ilana Shiff, Katherine Fairbank-Haynes, Joshua D Salvi, Cristina Cusin, Thilo Deckersbach, Ziv Williams, Justin T Baker, Darin D Dougherty, Alik S Widge

Abstract

Psychiatric disorders are increasingly understood as dysfunctions of hyper- or hypoconnectivity in distributed brain circuits. A prototypical example is obsessive compulsive disorder (OCD), which has been repeatedly linked to hyper-connectivity of cortico-striatal-thalamo-cortical (CSTC) loops. Deep brain stimulation (DBS) and lesions of CSTC structures have shown promise for treating both OCD and related disorders involving over-expression of automatic/habitual behaviors. Physiologically, we propose that this CSTC hyper-connectivity may be reflected in high synchrony of neural firing between loop structures, which could be measured as coherent oscillations in the local field potential (LFP). Here we report the results from the pilot patient in an Early Feasibility study (https://ichgcp.net/clinical-trials-registry/NCT03184454) in which we use the Medtronic Activa PC+ S device to simultaneously record and stimulate in the supplementary motor area (SMA) and ventral capsule/ventral striatum (VC/VS). We hypothesized that frequency-mismatched stimulation should disrupt coherence and reduce compulsive symptoms. The patient reported subjective improvement in OCD symptoms and showed evidence of improved cognitive control with the addition of cortical stimulation, but these changes were not reflected in primary rating scales specific to OCD and depression, or during blinded cortical stimulation. This subjective improvement was correlated with increased SMA and VC/VS coherence in the alpha, beta, and gamma bands, signals which persisted after correcting for stimulation artifacts. We discuss the implications of this research, and propose future directions for research in network modulation in OCD and more broadly across psychiatric disorders.

Keywords: cortico-striatal circuitry; local field potential; neural oscillations; neurostimulation; obsessive compulsive disorder; supplementary motor area; synchrony; ventral capsule/ventral striatum.

Copyright © 2020 Olsen, Basu, Bilge, Kanabar, Boggess, Rockhill, Gosai, Hahn, Peled, Ennis, Shiff, Fairbank-Haynes, Salvi, Cusin, Deckersbach, Williams, Baker, Dougherty and Widge.

Figures

FIGURE 1
FIGURE 1
Images of the DBS and paddle leads rendered with the Multi-Modality Visualization Tool (Felsenstein and Peled, 2017; Felsenstein et al., 2019). Position of left (red) and right (blue) SMA leads, and left (green) and right (yellow) VC/VS leads. Brodmann Area 6 is colored in turquoise. (A) coronal slice showing position of VC/VS leads (subcortical regions not colored). (B) Angled view with cortical coronal slice. Caudate nucleus colored in green, nucleus accumbens (Nacc) in blue, and putamen in pink. (C) Superior view (left on top) showing cortical lead positions. Note: the right VC/VS lead is in the caudate nucleus and NAcc whereas the left VC/VS lead is more laterally placed in the putamen. No adverse effects of lead placement were observed with the patient.
FIGURE 2
FIGURE 2
Figure depicts the timeline of study phases, changes in stimulation or recording parameters, and collection of clinical measures and LFP recordings. The x-axis values are days since the operation, and the ticks/labels denote days of clinical programming sessions. Note that there was no chronic cortical stimulation until day 235.
FIGURE 3
FIGURE 3
Schematic of saline bath preparation.
FIGURE 4
FIGURE 4
(A) Timing of important study events, for reference. (B) Clinical outcomes (from top to bottom YBOCS, MADRS, PGI, EMA) by days since operation.
FIGURE 5
FIGURE 5
Mean response time (in seconds) for each MSIT run as a function of day since operation the patient performed the task, collapsed across congruent and incongruent trials. Color of points indicates the stimulation phase: VC/VS only prior to setting optimization, VC/VS only after optimization, and combined VC/VS and cortical (100 Hz) stimulation.
FIGURE 6
FIGURE 6
Intraoperative WPLI as a function of VC/VS depth.
FIGURE 7
FIGURE 7
Average PSDs for: (A) the saline bath test (artifact) recordings; (B) the patient recordings prior to the removal of artifacts; and (C) the patient recordings after the subtraction of artifacts. For the patient recordings (B,C), each plot represents the recordings from each of the patient’s four leads, labeled by the brain region (cortical or VC/VS) and hemisphere. Plots in (A) (saline recordings) are labeled by which region and hemisphere a given recording matched in terms of recording and stimulation settings. Lines in each plot are the average PSD for all recordings, separated by the cortical stimulation frequency. Cortical stimulation frequency of 0 Hz indicates that no cortical stimulation was on during that recording. Lines represent means for all saline bath (A) or patient (B,C) recordings in each group. Error bands represent 95% confidence intervals, calculated from 1000 bootstrapped samples.
FIGURE 8
FIGURE 8
WPLI across frequency for: (A) the saline bath test (artifact) recordings; (B) the patient recordings prior to the removal of artifacts; and (C) the patient recordings after the subtraction of artifacts. Plots of patient recordings (B,C) indicate the cortical-striatal WPLI for the left and right hemispheres, with colored lines indicating the cortical stimulation frequency at the time of recording. Saline test plots (A) indicate whether the recording and stimulation settings for the IPGs matched those of the left or right hemisphere of patient recordings. Error bands represent 95% confidence intervals, calculated from 1000 bootstrapped samples.
FIGURE 9
FIGURE 9
(A) Timing of important study events for reference. (B) Heatmaps denoting the artifact corrected power (5–50 Hz) across the course of the study. (C) Artifact corrected cortical-striatal synchrony (WPLI) across the frequencies tested, as a function of days since operation. To better show subtle changes in WPLI, the range used for the color map is –0.1 to 0.2. Dotted lines on heatmaps (B,C) indicate clinical sessions, during which stimulation and recording settings changed and clinical outcomes were taken (see Figure 2 above for timing of important settings changes). Areas with missing LFP recordings have been interpolated (e.g., between days 138 and 151).
FIGURE 10
FIGURE 10
Correlations between YBOCS (A), MADRS (B), PGI (C), and EMA (D) and WPLI in the theta (leftmost column), alpha (second from the left), beta (second from the right), and gamma (rightmost column) bands. Data points are colored by the cortical stimulation frequency. Linear regressions (gray lines) were fit to the full data set for that measure (i.e., not separated by cortical stimulation frequency), with the error bands indicating the 95% confidence interval. Pearson correlations were also calculated, and the corresponding r and p-values are displayed.

References

    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9 357–381. 10.1146/annurev.ne.09.030186.002041
    1. Yousefi A., Crocker B., Zelmann R., Paulk A. C., Peled N., et al. (Preprint). Closed Loop Enhancement and Neural Decoding of Human Cognitive Control. Available online at:
    1. Beck A. T., Brown G., Berchick R. J., Stewart B. L., Steer R. A. (2006). Relationship between hopelessness and ultimate suicide: a replication with psychiatric outpatients. Focus 4 291–296. 10.1176/foc.4.2.291
    1. Bilge M. T., Gosai A. K., Widge A. S. (2018). Deep brain stimulation in psychiatry: mechanisms, models, and next-generation therapies. Psychiatr. Clin. North Am. 41 373–383.
    1. Brennan B., Rauch S. (2017). “Functional neuroimaging studies in obsessive-compulsive disorder: overview and synthesis,” in Obsessive-Compulsive Disorder: Phenomenology, Pathophysiology and Treatment, ed. Pittenger C. (Oxford: Oxford University Press), 213–230.
    1. Bronte-Stewart H., Barberini C., Koop M. M., Hill B. C., Henderson J. M., Wingeier B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 215 20–28. 10.1016/j.expneurol.2008.09.008
    1. Brown L. T., Mikell C. B., Youngerman B. E., Zhang Y., McKhann G. M., Sheth S. A. (2016). Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J. Neurosurg. 124 77–89. 10.3171/2015.1.jns14681
    1. Bush G., Shin L. M. (2006). The multi-source interference task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nat. Protoc. 1 308–313. 10.1038/nprot.2006.48
    1. Bush G., Shin L. M., Holmes J., Rosen B. R., Vogt B. A. (2003). The multi-source interference task: validation study with fMRI in individual subjects. Mol. Psychiatry 8, 60–70. 10.1038/sj.mp.4001217
    1. Calzà J., Gürsel D. A., Schmitz-Koep B., Bremer B., Reinholz L., Berberich G., et al. (2019). Altered cortico–striatal functional connectivity during resting state in obsessive–compulsive disorder. Front. Psychiatry 10:319. 10.3389/fpsyt.2019.00319
    1. Carmi L., Alyagon U., Barnea-Ygael N., Zohar J., Dar R., Zangen A. (2018). Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 11 158–165. 10.1016/j.brs.2017.09.004
    1. Carmi L., Tendler A., Bystritsky A., Hollander E., Blumberger D. M., Daskalakis J., et al. (2019). Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am. J. Psychiatry 176 931–938. 10.1176/appi.ajp.2019.18101180
    1. Cocchi L., Harrison B. J., Pujol J., Harding I. H., Fornito A., Pantelis C., et al. (2012). Functional alterations of large-scale brain networks related to cognitive control in obsessive-compulsive disorder. Hum. Brain Mapp. 33 1089–1106. 10.1002/hbm.21270
    1. Connolly A. T., Muralidharan A., Hendrix C., Johnson L., Gupta R., Stanslaski S., et al. (2015). Local field potential recordings in a non-human primate model of Parkinsons disease using the Activa PC+ S neurostimulator. J. Neural Eng. 12:066012 10.1088/1741-2560/12/6/066012
    1. De Hemptinne C., Swann N. C., Ostrem J. L., Ryapolova-Webb E. S., San Luciano M., Galifianakis N. B., et al. (2015). Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18 779–786. 10.1038/nn.3997
    1. Denys D., Graat I., Mocking R., de Koning P., Vulink N., Figee M., et al. (2020). Efficacy of deep brain stimulation of the ventral anterior limb of the internal capsule for refractory obsessive-compulsive disorder: a clinical cohort of 70 patients. Am. J. Psychiatry 177 265–271. 10.1176/appi.ajp.2019.19060656
    1. Dougherty D. D., Brennan B. P., Stewart S. E., Wilhelm S., Widge A. S., Rauch S. L. (2018). Neuroscientifically informed formulation and treatment planning for patients with obsessive-compulsive disorder: a review. JAMA Psychiatry 75 1081–1087. 10.1001/jamapsychiatry.2018.0930
    1. Dougherty D. D., Chou T., Corse A. K., Arulpragasam A. R., Widge A. S., Cusin C., et al. (2016). Acute deep brain stimulation changes in regional cerebral blood flow in obsessive-compulsive disorder. J. Neurosurg. 125 1087–1093. 10.3171/2015.9.jns151387
    1. Felsenstein O., Peled N. (2017). MMVT - Multi-Modality Visualization Tool. GitHub Repository. Available online at: (accessed June 1, 2020).
    1. Felsenstein O., Peled N., Hahn E., Rockhill A. P., Folsom L., Gholipour T., et al. (2019). Multi-modal neuroimaging analysis and visualization tool (MMVT). arXiv [Preprint]. Available online at: (accessed June 1, 2020)
    1. Figee M., Luigjes J., Smolders R., Valencia-Alfonso C. E., Van Wingen G., De Kwaasteniet B., et al. (2013). Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat. Neurosci. 16 386–387.
    1. Fineberg N. A., Gale T. M. (2005). Evidence-based pharmacotherapy of obsessive–compulsive disorder. Int. J. Neuropsychopharmacol. 8 107–129.
    1. Foa E. B., Liebowitz M. R., Kozak M. J., Davies S., Campeas R., Franklin M. E., et al. (2005). Randomized, placebo-controlled trial of exposure and ritual prevention, clomipramine, and their combination in the treatment of obsessive-compulsive disorder. Am. J. Psychiatry 162 151–161. 10.1176/appi.ajp.162.1.151
    1. Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9 474–480. 10.1016/j.tics.2005.08.011
    1. Fries P. (2015). Rhythms for cognition: communication through coherence. Neuron 88 220–235. 10.1016/j.neuron.2015.09.034
    1. Fröhlich F. (2015). Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog. Brain Res. 222 41–73. 10.1016/bs.pbr.2015.07.025
    1. Gomes P. V. O., Brasil-Neto J. P., Allam N., Rodrigues de Souza E. (2012). A randomized, double-blind trial of repetitive transcranial magnetic stimulation in obsessive-compulsive disorder with three-month follow-up. J. Neuropsychiatry Clin. Neurosci. 24 437–443. 10.1176/appi.neuropsych.11100242
    1. González-Villar A. J., Carrillo-de-la-Peña M. T. (2017). Brain electrical activity signatures during performance of the multisource interference task. Psychophysiology 54 874–881. 10.1111/psyp.12843
    1. Goodman W. K., Price L. H., Rasmussen S. A., Mazure C., Fleischmann R. L., Hill C. L., et al. (1989). The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch. Gen. Psychiatry 46 1006–1011. 10.1001/archpsyc.1989.01810110048007
    1. Göttlich M., Krämer U. M., Kordon A., Hohagen F., Zurowski B. (2014). Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum. Brain Mapp. 35 5617–5632. 10.1002/hbm.22574
    1. Gramfort A., Luessi M., Larson E., Engemann D. A., Strohmeier D., Brodbeck C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7:267. 10.3389/fnins.2013.00267
    1. Gratton G., Coles M. G., Donchin E. (1992). Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121 480–506. 10.1037/0096-3445.121.4.480
    1. Graybiel A. M., Rauch S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron 28 343–347. 10.1016/s0896-6273(00)00113-6
    1. Greenberg B. D., Gabriels L. A., Malone D. A., Rezai A. R., Friehs G. M., Okun M. S., et al. (2010). Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol. Psychiatry 15 64–79.
    1. Grossman N., Bono D., Dedic N., Kodandaramaiah S. B., Rudenko A., Suk H. J., et al. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169 1029–1041. 10.1016/j.cell.2017.05.024
    1. Gürsel D. A., Avram M., Sorg C., Brandl F., Koch K. (2018). Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci. Biobehav. Rev. 87 151–160. 10.1016/j.neubiorev.2018.01.016
    1. Haber S. N. (2003). The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26 317–330. 10.1016/j.jchemneu.2003.10.003
    1. Harrison B. J., Soriano-Mas C., Pujol J., Ortiz H., López-Solà M., Hernández-Ribas R., et al. (2009). Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch. Gen. Psychiatry 66 1189–1200. 10.1001/archgenpsychiatry.2009.152
    1. Hazari N., Narayanaswamy J. C., Venkatasubramanian G. (2019). Neuroimaging findings in obsessive–compulsive disorder: a narrative review to elucidate neurobiological underpinnings. Indian J. Psychiatry 61(Suppl. 1), S9–S29.
    1. Huang Y., Cheeran B., Green A. L., Denison T. J., Aziz T. Z. (2019). Applying a sensing-enabled system for ensuring safe anterior cingulate deep brain stimulation for pain. Brain Sci. 9:150. 10.3390/brainsci9070150
    1. Karas P. J., Lee S., Jimenez-Shahed J., Goodman W. K., Viswanathan A., Sheth S. A. (2019). Deep brain stimulation for obsessive compulsive disorder: evolution of surgical stimulation target parallels changing model of dysfunctional brain circuits. Front. Neurosci. 12:998. 10.3389/fnins.2018.00998
    1. Klein E., Goering S., Gagne J., Shea C. V., Franklin R., Zorowitz S., et al. (2016). Brain-computer interface-based control of closed-loop brain stimulation: attitudes and ethical considerations. Brain Comput. Interfaces 3 140–148. 10.1080/2326263x.2016.1207497
    1. Kleiner M., Brainard D., Pelli D. (2007). What’s new in Psychtoolbox-3. Perception 36 1–16.
    1. Kopell B. H., Halverson J., Butson C. R., Dickinson M., Bobholz J., Harsch H., et al. (2011). Epidural cortical stimulation of the left dorsolateral prefrontal cortex for refractory major depressive disorder. Neurosurgery 69 1015–1029. 10.1227/neu.0b013e318229cfcd
    1. Koran L. M., Thienemann M. L., Davenport R. (1996). Quality of life for patients with obsessive-compulsive disorder. Am. J. Psychiatry 153 783–788. 10.1176/ajp.153.6.783
    1. Krack P., Hariz M. I., Baunez C., Guridi J., Obeso J. A. (2010). Deep brain stimulation: from neurology to psychiatry? Trends Neurosci. 33 474–484.
    1. Kühn A. A., Kempf F., Brücke C., Doyle L. G., Martinez-Torres I., Pogosyan A., et al. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28 6165–6173. 10.1523/jneurosci.0282-08.2008
    1. Kühn A. A., Kupsch A., Schneider G. H., Brown P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23 1956–1960. 10.1111/j.1460-9568.2006.04717.x
    1. Lapidus K. A., Kopell B. H., Ben-Haim S., Rezai A. R., Goodman W. K. (2013). History of psychosurgery: a psychiatrist’s perspective. World Neurosurg. 80 S27.e1–S27.e16.
    1. Luyten L., Hendrickx S., Raymaekers S., Gabriëls L., Nuttin B. (2016). Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol. Psychiatry 21 1272–1280. 10.1038/mp.2015.124
    1. Maia T. V., Cooney R. E., Peterson B. S. (2008). The neural bases of obsessive–compulsive disorder in children and adults. Dev. Psychopathol. 20 1251–1283. 10.1017/s0954579408000606
    1. Mancebo M. C., Greenberg B., Grant J. E., Pinto A., Eisen J. L., Dyck I., et al. (2008). Correlates of occupational disability in a clinical sample of obsessive-compulsive disorder. Compr. Psychiatry 49 43–50. 10.1016/j.comppsych.2007.05.016
    1. Mantovani A., Simpson H. B., Fallon B. A., Rossi S., Lisanby S. H. (2010). Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive–compulsive disorder. Int. J. Neuropsychopharmacol. 13 217–227. 10.1017/s1461145709990435
    1. Menchón J. M., Real E., Alonso P., Aparicio M. A., Segalas C., Plans G., et al. (2019). A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsive disorder. Mol. Psychiatry. 10.1038/s41380-019-0562-6 [Epub ahead of print].
    1. Milad M. R., Rauch S. L. (2012). Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16 43–51. 10.1016/j.tics.2011.11.003
    1. Miller E. K., Lundqvist M., Bastos A. M. (2018). Working Memory 2.0. Neuron 100 463–475.
    1. Montgomery S. A., Åsberg M. A. R. I. E. (1979). A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134 382–389. 10.1192/bjp.134.4.382
    1. Nakano K., Kayahara T., Tsutsumi T., Ushiro H. (2000). Neural circuits and functional organization of the striatum. J. Neurol. 247(Suppl 5), V1–V15.
    1. Nolte G., Bai O., Wheaton L., Mari Z., Vorbach S., Hallett M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115 2292–2307. 10.1016/j.clinph.2004.04.029
    1. Nuttin B., Cosyns P., Demeulemeester H., Gybels J., Meyerson B. (1999). Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354:1526. 10.1016/s0140-6736(99)02376-4
    1. Obeso J. A., Rodríguez-Oroz M. C., Benitez-Temino B., Blesa F. J., Guridi J., Marin C., et al. (2008). Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov. Disord. 23(Suppl 3), S548–S559.
    1. Oswal A., Beudel M., Zrinzo L., Limousin P., Hariz M., Foltynie T., et al. (2016). Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain 139 1482–1496. 10.1093/brain/aww048
    1. Padilla-Coreano N., Canetta S., Mikofsky R. M., Alway E., Passecker J., Myroshnychenko M. V., et al. (2019). Hippocampal-prefrontal theta transmission regulates avoidance behavior. Neuron 104 601–610. 10.1016/j.neuron.2019.08.006
    1. Pallanti S., Hollander E., Bienstock C., Koran L., Leckman J., Marazziti D., et al. (2002). Treatment non-response in OCD: methodological issues and operational definitions. Int. J. Neuropsychopharmacol. 5 181–191.
    1. Papakostas G. I., Petersen T., Pava J., Masson E., Worthington J. J., III, Alpert J. E., et al. (2005). Hopelessness and suicidal ideation in outpatients with treatment-resistant depression: prevalence and impact on treatment outcome. Focus 191 444–145. 10.1097/01.nmd.0000081591.46444.97
    1. Parent A., Hazrati L. N. (1995). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20 91–127. 10.1016/0165-0173(94)00007-c
    1. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12 2825–2830.
    1. Posner J., Marsh R., Maia T. V., Peterson B. S., Gruber A., Simpson H. B. (2014). Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum. Brain Mapp. 35 2852–2860. 10.1002/hbm.22371
    1. Rasmussen S. A., Noren G., Greenberg B. D., Marsland R., McLaughlin N. C., Malloy P. J., et al. (2018). Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol. Psychiatry 84 355–364. 10.1016/j.biopsych.2017.11.034
    1. Rauch S. L., Dougherty D. D., Malone D., Rezai A., Friehs G., Fischman A. J., et al. (2006). A functional neuroimaging investigation of deep brain stimulation in patients with obsessive–compulsive disorder. J. Neurosurg. 104 558–565.
    1. Ray N. J., Jenkinson N., Wang S., Holland P., Brittain J. S., Joint C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp. Neurol. 213 108–113. 10.1016/j.expneurol.2008.05.008
    1. Raymaekers S., Vansteelandt K., Luyten L., Bervoets C., Demyttenaere K., Gabriëls L., et al. (2017). Long-term electrical stimulation of bed nucleus of stria terminalis for obsessive-compulsive disorder. Mol. Psychiatry 22 931–934. 10.1038/mp.2016.124
    1. Robbins T. W., Gillan C. M., Smith D. G., de Wit S., Ersche K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16 81–91. 10.1016/j.tics.2011.11.009
    1. Robbins T. W., Vaghi M. M., Banca P. (2019). Obsessive-compulsive disorder: puzzles and prospects. Neuron 102 27–47. 10.1016/j.neuron.2019.01.046
    1. Rosanova M., Fecchio M., Casarotto S., Sarasso S., Casali A. G., Pigorini A., et al. (2018). Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat. Commun. 9:4427.
    1. Sheth S. A., Mian M. K., Patel S. R., Asaad W. F., Williams Z. M., Dougherty D. D., et al. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488 218–221. 10.1038/nature11239
    1. Shiffman S., Stone A. A., Hufford M. R. (2008). Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4 1–32.
    1. Shin N. Y., Lee T. Y., Kim E., Kwon J. S. (2014). Cognitive functioning in obsessive-compulsive disorder: a meta-analysis. Psychol. Med. 44 1121–1130. 10.1017/s0033291713001803
    1. Spatola G., Martinez-Alvarez R., Martínez-Moreno N., Rey G., Linera J., Rios-Lago M., et al. (2018). Results of Gamma Knife anterior capsulotomy for refractory obsessive-compulsive disorder: results in a series of 10 consecutive patients. J. Neurosurg. 131 376–383. 10.3171/2018.4.jns171525
    1. Stam C. J., Nolte G., Daffertshofer A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28 1178–1193. 10.1002/hbm.20346
    1. Stanslaski S., Afshar P., Cong P., Giftakis J., Stypulkowski P., Carlson D., et al. (2012). Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20 410–421. 10.1109/tnsre.2012.2183617
    1. Stinstra J. G., Peters M. J. (1998). The volume conductor may act as a temporal filter on the ECG and EEG. Med. Biol. Eng. Comput. 36 711–716. 10.1007/bf02518873
    1. Swann N. C., de Hemptinne C., Miocinovic S., Qasim S., Ostrem J. L., Galifianakis N. B., et al. (2017). Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J. Neurosurg. 128 605–616. 10.3171/2016.11.jns161162
    1. Swann N. C., de Hemptinne C., Miocinovic S., Qasim S., Wang S. S., Ziman N., et al. (2016). Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J. Neurosci. 36 6445–6458. 10.1523/jneurosci.1128-16.2016
    1. Vaghi M. M., Vértes P. E., Kitzbichler M. G., Apergis-Schoute A. M., van der Flier F. E., Fineberg N. A., et al. (2017). Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol. Psychiatry 81 708–717. 10.1016/j.biopsych.2016.08.009
    1. van Westen M., Rietveld E., Bergfeld I. O., de Koning P., Vullink N., Ooms P., et al. (2020). Optimizing deep brain stimulation parameters in obsessive–compulsive disorder. Neuromodulation. 10.1111/ner.13243
    1. Veerakumar A., Tiruvadi V., Howell B., Waters A. C., Crowell A. L., Voytek B., et al. (2019). Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J. Neurophysiol. 122 1023–1035. 10.1152/jn.00875.2018
    1. Vinck M., Oostenveld R., Van Wingerden M., Battaglia F., Pennartz C. M. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55 1548–1565. 10.1016/j.neuroimage.2011.01.055
    1. Voon V., Derbyshire K., Rück C., Irvine M. A., Worbe Y., Enander J., et al. (2015). Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20 345–352. 10.1038/mp.2014.44
    1. Walz L. C., Nauta M. H., Aan Het Rot M. (2014). Experience sampling and ecological momentary assessment for studying the daily lives of patients with anxiety disorders: a systematic review. J. Anxiety Disord. 28 925–937. 10.1016/j.janxdis.2014.09.022
    1. Widge A. S., Dougherty D. D., Marks W. J., Jr. (eds) (2019). “Managing patients with psychiatric disorders with deep brain stimulation,” in Deep Brain Stimulation Management, 2nd Edn, (Cambridge: Cambridge University Press; ).
    1. Widge A. S., Malone D. A., Jr., Dougherty D. D. (2018). Closing the loop on deep brain stimulation for treatment-resistant depression. Front. Neurosci. 12:175. 10.3389/fnins.2018.00175
    1. Widge A. S., Miller E. K. (2019). Targeting cognition and networks through neural oscillations: next-generation clinical brain stimulation. JAMA Psychiatry 76 671–672. 10.1001/jamapsychiatry.2019.0740
    1. Widge A. S., Zorowitz S., Basu I., Paulk A. C., Cash S. S., Eskandar E. N., et al. (2019). Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat. Commun. 10:1536.
    1. Williams N. R., Short E. B., Hopkins T., Bentzley B. S., Sahlem G. L., Pannu J., et al. (2016). Five-year follow-up of bilateral epidural prefrontal cortical stimulation for treatment-resistant depression. Brain Stimul. 9 897–904. 10.1016/j.brs.2016.06.054
    1. Wingeier B., Tcheng T., Koop M. M., Hill B. C., Heit G., Bronte-Stewart H. M. (2006). Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp. Neurol. 197 244–251. 10.1016/j.expneurol.2005.09.016
    1. Wojtecki L., Hirschmann J., Elben S., Boschheidgen M., Trenado C., Vesper J., et al. (2017). Oscillatory coupling of the subthalamic nucleus in obsessive compulsive disorder. Brain 140:e56. 10.1093/brain/awx164
    1. Yalcin I., Bump R. C. (2003). Validation of two global impression questionnaires for incontinence. Am. J. Obstet. Gynecol. 189 98–101. 10.1067/mob.2003.379

Source: PubMed

3
Abonner