Dose escalation of Stereotactic Body Radiotherapy (SBRT) for locally advanced unresectable pancreatic cancer patients with CyberKnife: protocol of a phase I study

Shui-Wang Qing, Xiao-Ping Ju, Yang-Sen Cao, Huo-Jun Zhang, Shui-Wang Qing, Xiao-Ping Ju, Yang-Sen Cao, Huo-Jun Zhang

Abstract

Background: Dose escalation of SBRT for locally advanced pancreatic cancer patients had been reported in several studies in one or three fractions, and phase I protocol was developed to investigate the maximum tolerated dose with CyberKnife for locally advanced unresectable pancreatic cancer patients in five fractions.

Methods: The study is designed as a mono-center phase I study. The primary endpoint is to determine the maximum tolerated dose by frequency of III/IV GI (gastrointestinal) toxicity. Adverse events (AE) according to Common Toxicity Criteria (CTC) version 4. Doses of 7 Gy, 7.5 Gy, 8 Gy, 8.5 Gy, 9 Gy, 9.5Gy x 5 respectively would be delivered while meeting with normal tissue constraints. A minimum of three patients will be included for each dosage level. And an interval is 4 weeks from the first patient treatment to the next patient treatment at each dose level. The maximal tolerated dose will be defined as the dose for which at least two patients in three, or at least three patients in nine, will present with a limiting toxicity.

Discussion: Since the dose and fractions of SBRT treatment for locally advanced pancreatic cancer patients are still unknown, we propose to conduct a Phase I study determining the maximum tolerated dose of CyberKnife SBRT for the treatment of locally advanced pancreatic tumor based on a 5 fractions treatment regimen. This trial protocol has been approved by the Ethics committee of Changhai hospital. The ethics number is 2016-030-01.

Trial registration: Clinical trials number: NCT02716207 . Date of registration: 20 March 2016.

Keywords: Locally advanced pancreatic cancer; SBRT study protocol.

References

    1. Gurka MK, Collins SP, Slack R, et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: A pilot trial demonstrating safety. Radiat Oncol. 2013;18:44. doi: 10.1186/1748-717X-8-44.
    1. Koong AC, Le QT, Ho A, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2004;58:1017–1021. doi: 10.1016/j.ijrobp.2003.11.004.
    1. Koong AC, Christofferson E, Le QT, et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2005;63(2):320–323. doi: 10.1016/j.ijrobp.2005.07.002.
    1. Schellenberg D, Kim J, Christman-Skieller C, et al. Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2011;81(1):181–188. doi: 10.1016/j.ijrobp.2010.05.006.
    1. Bae SH, Kim MS, Cho CK, et al. Predictor of severe gastroduodenal toxicity after stereotactic body radiotherapy for abdominopelvic malignancies. Int J Radiat Oncol Biol Phys. 2012;84:469–474. doi: 10.1016/j.ijrobp.2012.06.005.
    1. Bae SH, Kim MS, Kim SY, et al. Severe intestinal toxicity after stereotactic ablative radiotherapy for abdominopelvic malignancies. Int J Colorectal Dis. 2013;28:1707–1713. doi: 10.1007/s00384-013-1717-6.
    1. Chuong MD, Springett GM, Freilich JM, et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys. 2013;86(3):516–522. doi: 10.1016/j.ijrobp.2013.02.022.
    1. Mahadevan A, Miksad R, Goldstein M, et al. Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys. 2011;81:e615–e622. doi: 10.1016/j.ijrobp.2011.04.045.
    1. Chang DT, Schellenberg D, Shen J, et al. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer. 2009;115:665–672. doi: 10.1002/cncr.24059.
    1. Kavanagh BD, Schefter TE, Cardenes HR, et al. Interim analysis of a prospective phase I/II trial of SBRT for liver metastases. Acta Oncol. 2006;45:848–855. doi: 10.1080/02841860600904870.
    1. Rusthoven KE, Kavanagh BD, Cardenes H, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27:1572–1578. doi: 10.1200/JCO.2008.19.6329.
    1. Kavanagh BD, Pan CC, Dawson LA, et al. Radiation dosevolume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys. 2010;76:S101–S107. doi: 10.1016/j.ijrobp.2009.05.071.
    1. Nahum AE. The Radiobiology of Hypofractionation. Clin Oncol. 2015;27:260–269. doi: 10.1016/j.clon.2015.02.001.
    1. Fowler JF, Welsh JS, Howard SP. Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys. 2004;59:242–249. doi: 10.1016/j.ijrobp.2004.01.004.
    1. Song CW, Cho LC, Yuan J, et al. Radiobiology of stereotactic body radiation therapy/stereotactic radiosurgery and the linear-quadratic model. Int J Radiat Oncol Biol Phys. 2013;87:18–19. doi: 10.1016/j.ijrobp.2013.03.013.
    1. Song CW, Park I, Cho LC, et al. Is indirect cell death involved in response of tumors to stereotactic radiosurgery and stereotactic body radiation therapy? Int J Radiat Oncol Biol Phys. 2014;89:924–925. doi: 10.1016/j.ijrobp.2014.03.043.
    1. Kirkpatrick JP, Meyer JJ, Marks LB, et al. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–243. doi: 10.1016/j.semradonc.2008.04.005.

Source: PubMed

3
Abonner