Tuberculosis (TB) Aftermath: study protocol for a hybrid type I effectiveness-implementation non-inferiority randomized trial in India comparing two active case finding (ACF) strategies among individuals treated for TB and their household contacts

Samyra R Cox, Abhay Kadam, Sachin Atre, Akshay N Gupte, Hojoon Sohn, Nikhil Gupte, Trupti Sawant, Vishal Mhadeshwar, Ryan Thompson, Emily Kendall, Christopher Hoffmann, Nishi Suryavanshi, Deanna Kerrigan, Srikanth Tripathy, Arjunlal Kakrani, Madhusudan S Barthwal, Vidya Mave, Jonathan E Golub, TB Aftermath study team, Sunil Ambike, Jayshri Jagtap, Pallavi Kadam, Shankar Jadhav, Anita Mahajan, Yogesh Bhosale, Vaibhavi Bodhe, Gautami Walunj, Sachin Rathod, Akshay Bhalchim, Samyra R Cox, Abhay Kadam, Sachin Atre, Akshay N Gupte, Hojoon Sohn, Nikhil Gupte, Trupti Sawant, Vishal Mhadeshwar, Ryan Thompson, Emily Kendall, Christopher Hoffmann, Nishi Suryavanshi, Deanna Kerrigan, Srikanth Tripathy, Arjunlal Kakrani, Madhusudan S Barthwal, Vidya Mave, Jonathan E Golub, TB Aftermath study team, Sunil Ambike, Jayshri Jagtap, Pallavi Kadam, Shankar Jadhav, Anita Mahajan, Yogesh Bhosale, Vaibhavi Bodhe, Gautami Walunj, Sachin Rathod, Akshay Bhalchim

Abstract

Background: Approximately 7% of all reported tuberculosis (TB) cases each year are recurrent, occurring among people who have had TB in the recent or distant past. TB recurrence is particularly common in India, which has the largest TB burden worldwide. Although patients recently treated for TB are at high risk of developing TB again, evidence around effective active case finding (ACF) strategies in this population is scarce. We will conduct a hybrid type I effectiveness-implementation non-inferiority randomized trial to compare the effectiveness, cost-effectiveness, and feasibility of two ACF strategies among individuals who have completed TB treatment and their household contacts (HHCs).

Methods: We will enroll 1076 adults (≥ 18 years) who have completed TB treatment at a public TB unit (TU) in Pune, India, along with their HHCs (averaging two per patient, n = 2152). Participants will undergo symptom-based ACF by existing healthcare workers (HCWs) at 6-month intervals and will be randomized to either home-based ACF (HACF) or telephonic ACF (TACF). Symptomatic participants will undergo microbiologic testing through the program. Asymptomatic HHCs will be referred for TB preventive treatment (TPT) per national guidelines. The primary outcome is rate per 100 person-years of people diagnosed with new or recurrent TB by study arm, within 12 months following treatment completion. The secondary outcome is proportion of HHCs < 6 years, by study arm, initiated on TPT after ruling out TB disease. Study staff will collect socio-demographic and clinical data to identify risk factors for TB recurrence and will measure post-TB lung impairment. In both arms, an 18-month "mop-up" visit will be conducted to ascertain outcomes. We will use the RE-AIM framework to characterize implementation processes and explore acceptability through in-depth interviews with index patients, HHCs and HCWs (n = 100). Cost-effectiveness will be assessed by calculating the incremental cost per TB case detected within 12 months and projected for disability-adjusted life years averted based on modeled estimates of morbidity, mortality, and time with infectious TB.

Discussion: This novel trial will guide India's scale-up of post-treatment ACF and provide an evidence base for designing strategies to detect recurrent and new TB in other high burden settings.

Trial registration: NCT04333485 , registered April 3, 2020. CTRI/2020/05/025059 [Clinical Trials Registry of India], registered May 6 2020.

Keywords: Active case finding; Hybrid effectiveness-implementation trial; India; Recurrence; Tuberculosis.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
TB Aftermath study flow diagram. TB, tuberculosis; HACF, home-based active case finding; TACF, telephonic active case finding; HHC, household contact; TU, TB unit
Fig. 2
Fig. 2
Summary of major cost items and data sources

References

    1. WHO . World tuberculosis report. Geneva: World Health Organization; 2021.
    1. Program RNTC . National Strategic Plan for tuberculosis elimination 2017-2025. New Delhi: Central TB Division; 2017.
    1. WHO. Tuberculosis profile: India 2022 [Available from: ].
    1. Behera D. TB control in India in the COVID era. Indian J Tuberc. 2021;68(1):128–133. doi: 10.1016/j.ijtb.2020.08.019.
    1. Cilloni L, Fu H, Vesga JF, Dowdy D, Pretorius C, Ahmedov S, et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine. 2020;28:100603. doi: 10.1016/j.eclinm.2020.100603.
    1. Ministry of Health and Family Welfare (MoHFW) GoI . Guidance note on bidirectional TB-COVID screening. 2020.
    1. Ministry of Health and Family Welfare (MoHFW) GoI . Advisory from DDG-TB to mitigate impact of COVID-19 pandemic on NTEP. 2021.
    1. Ministry of Health and Family Welfare (MoHFW) GoI. Guidelines for Programmatic Management of Tuberculosis Preventive Treatment in India. New Delhi: National TB Elimination Programme; 2021.
    1. Sonnenberg P, Murray J, Glynn JR, Shearer S, Kambashi B, Godfrey-Faussett P. HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in south African mineworkers. Lancet. 2001;358(9294):1687–1693. doi: 10.1016/S0140-6736(01)06712-5.
    1. Rosser A, Marx FM, Pareek M. Recurrent tuberculosis in the pre-elimination era. Int J Tuberc Lung Dis. 2018;22(2):139–150. doi: 10.5588/ijtld.17.0590.
    1. Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L, et al. Impact of HIV infection on the recurrence of tuberculosis in South India. J Infect Dis. 2010;201(5):691–703. doi: 10.1086/650528.
    1. WHO. Global tuberculosis control: surveillance, planning, financing. Geneva: World Health Organization. WHO/CDS/TB/2003.316 Reprint.
    1. Vega V, Rodríguez S, Van der Stuyft P, Seas C, Otero L. Recurrent TB: a systematic review and meta-analysis of the incidence rates and the proportions of relapses and reinfections. Thorax. 2021;76(5):494–502. doi: 10.1136/thoraxjnl-2020-215449.
    1. World Health Organization . Global tuberculosis report 2020. Geneva: Switzerland; 2020.
    1. Uys P, Brand H, Warren R, van der Spuy G, Hoal EG, van Helden PD. The risk of tuberculosis reinfection soon after cure of a first disease episode is extremely high in a hyperendemic community. PLoS One. 2015;10(12):e0144487. doi: 10.1371/journal.pone.0144487.
    1. Hermans SM, Zinyakatira N, Caldwell J, Cobelens FGJ, Boulle A, Wood R. High rates of recurrent tuberculosis disease: a population-level cohort study. Clin Infect Dis. 2021;72(11):1919–1926. doi: 10.1093/cid/ciaa470.
    1. Kim L, Moonan PK, Yelk Woodruff RS, Kammerer JS, Haddad MB. Epidemiology of recurrent tuberculosis in the United States, 1993-2010. Int J Tuberc Lung Dis. 2013;17(3):357–360. doi: 10.5588/ijtld.12.0640.
    1. Cox H, Kebede Y, Allamuratova S, Ismailov G, Davletmuratova Z, Byrnes G, et al. Tuberculosis recurrence and mortality after successful treatment: impact of drug resistance. PLoS Med. 2006;3(10):e384. doi: 10.1371/journal.pmed.0030384.
    1. Zignol M, Wright A, Jaramillo E, Nunn P, Raviglione MC. Patients with previously treated tuberculosis no longer neglected. Clin Infect Dis. 2007;44(1):61–64. doi: 10.1086/509328.
    1. Law S, Benedetti A, Oxlade O, Schwartzman K, Menzies D. Comparing cost-effectiveness of standardised tuberculosis treatments given varying drug resistance. Eur Respir J. 2014;43(2):566. doi: 10.1183/09031936.00005613.
    1. Azhar GS. DOTS for TB relapse in India: a systematic review. Lung India. 2012;29(2):147–153. doi: 10.4103/0970-2113.95320.
    1. Velayutham B, Chadha VK, Singla N, Narang P, Gangadhar Rao V, Nair S, et al. Recurrence of tuberculosis among newly diagnosed sputum positive pulmonary tuberculosis patients treated under the revised National Tuberculosis Control Programme, India: a multi-centric prospective study. PLoS One. 2018;13(7):e0200150. doi: 10.1371/journal.pone.0200150.
    1. Fox GJ, Barry SE, Britton WJ, Marks GB. Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2013;41(1):140. doi: 10.1183/09031936.00070812.
    1. WHO. WHO consolidated guidelines on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021. License: CC BY-NC-SA 3.0 IGO.
    1. Marx FM, Yaesoubi R, Menzies NA, Salomon JA, Bilinski A, Beyers N, et al. Tuberculosis control interventions targeted to previously treated people in a high-incidence setting: a modelling study. Lancet Glob Health. 2018;6(4):e426–ee35. doi: 10.1016/S2214-109X(18)30022-6.
    1. Driver CR, Munsiff SS, Li J, Kundamal N, Osahan SS. Relapse in persons treated for drug-susceptible tuberculosis in a population with high coinfection with human immunodeficiency virus in New York City. Clin Infect Dis. 2001;33(10):1762–1769. doi: 10.1086/323784.
    1. Dale KD, Globan M, Tay EL, Trauer JM, Trevan PG, Denholm JT. Recurrence of tuberculosis in a low-incidence setting without directly observed treatment: Victoria, Australia, 2002-2014. Int J Tuberc Lung Dis. 2017;21(5):550–555. doi: 10.5588/ijtld.16.0651.
    1. Panjabi R, Comstock GW, Golub JE. Recurrent tuberculosis and its risk factors: adequately treated patients are still at high risk. Int J Tuberc Lung Dis. 2007;11(8):828–837.
    1. Corbett EL, Marston B, Churchyard GJ, De Cock KM. Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet. 2006;367(9514):926–937. doi: 10.1016/S0140-6736(06)68383-9.
    1. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152. doi: 10.1371/journal.pmed.0050152.
    1. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9(1):81. doi: 10.1186/1741-7015-9-81.
    1. Huangfu P, Ugarte-Gil C, Golub J, Pearson F, Critchley J. The effects of diabetes on tuberculosis treatment outcomes: an updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(7):783–796. doi: 10.5588/ijtld.18.0433.
    1. Altet N, Latorre I, Jimenez-Fuentes MA, Maldonado J, Molina I, Gonzalez-Diaz Y, et al. Assessment of the influence of direct tobacco smoke on infection and active TB management. PLoS One. 2017;12(8):e0182998. doi: 10.1371/journal.pone.0182998.
    1. Masjedi MR, Hosseini M, Aryanpur M, Mortaz E, Tabarsi P, Soori H, et al. The effects of smoking on treatment outcome in patients newly diagnosed with pulmonary tuberculosis. Int J Tuberc Lung Dis. 2017;21(3):351–356. doi: 10.5588/ijtld.16.0513.
    1. Thomas BE, Thiruvengadam K, Rani S, Kadam D, Ovung S, Sivakumar S, et al. Correction: Smoking, alcohol use disorder and tuberculosis treatment outcomes: a dual co-morbidity burden that cannot be ignored. PLoS One. 2019;14(11):e0224914. doi: 10.1371/journal.pone.0224914.
    1. Cox SR, Gupte AN, Thomas B, Gaikwad S, Mave V, Padmapriyadarsini C, et al. Unhealthy alcohol use independently associated with unfavorable TB treatment outcomes among Indian men. Int J Tuberc Lung Dis. 2021;25(3):182–190. doi: 10.5588/ijtld.20.0778.
    1. Elf JL, Kinikar A, Khadse S, Mave V, Suryavanshi N, Gupte N, et al. The association of household fine particulate matter and kerosene with tuberculosis in women and children in Pune, India. Occup Environ Med. 2019;76(1):40. doi: 10.1136/oemed-2018-105122.
    1. Lin H-H, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4(1):e20. doi: 10.1371/journal.pmed.0040020.
    1. Gupte AN, Selvaraju S, Paradkar M, Danasekaran K, Shivakumar S, Thiruvengadam K, et al. Respiratory health status is associated with treatment outcomes in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2019;23(4):450–457. doi: 10.5588/ijtld.18.0551.
    1. Murray M, Oxlade O, Lin HH. Modeling social, environmental and biological determinants of tuberculosis. Int J Tuberc Lung Dis. 2011;15(Suppl 2):64–70. doi: 10.5588/ijtld.10.0535.
    1. Pedrazzoli D, Boccia D, Dodd PJ, Lonnroth K, Dowdy DW, Siroka A, et al. Modelling the social and structural determinants of tuberculosis: opportunities and challenges. Int J Tuberc Lung Dis. 2017;21(9):957–964. doi: 10.5588/ijtld.16.0906.
    1. Duarte R, Lonnroth K, Carvalho C, Lima F, Carvalho ACC, Munoz-Torrico M, et al. Tuberculosis, social determinants and co-morbidities (including HIV) Pulmonology. 2018;24(2):115–119. doi: 10.1016/j.rppnen.2017.11.003.
    1. Chowdhury AM, Chowdhury S, Islam MN, Islam A, Vaughan JP. Control of tuberculosis by community health workers in Bangladesh. Lancet (London, England) 1997;350(9072):169–172. doi: 10.1016/S0140-6736(96)11311-8.
    1. Vo LNQ, Forse RJ, Codlin AJ, Vu TN, Le GT, Do GC, et al. A comparative impact evaluation of two human resource models for community-based active tuberculosis case finding in Ho Chi Minh City, Viet Nam. BMC Public Health. 2020;20(1):934. doi: 10.1186/s12889-020-09042-4.
    1. Datiko DG, Lindtjorn B. Health extension workers improve tuberculosis case detection and treatment success in southern Ethiopia: a community randomized trial. PLoS One. 2009;4(5):e5443. doi: 10.1371/journal.pone.0005443.
    1. Mogedal SWS, Afzal MM. Community health workers and universal health coverage: a framework for partners' harmonized support. Glob Health Workforce Alliance. 2013.
    1. Davis JL, Turimumahoro P, Meyer AJ, Ayakaka I, Ochom E, Ggita J, et al. Home-based tuberculosis contact investigation in Uganda: a household randomised trial. ERJ Open Research. 2019;5(3):00112–02019. doi: 10.1183/23120541.00112-2019.
    1. Schneider H, Schaay N, Dudley L, Goliath C, Qukula T. The challenges of reshaping disease specific and care oriented community based services towards comprehensive goals: a situation appraisal in the Western Cape Province, South Africa. BMC Health Serv Res. 2015;15:436. doi: 10.1186/s12913-015-1109-4.
    1. Burke RM, Nliwasa M, Feasey HRA, Chaisson LH, Golub JE, Naufal F, et al. Community-based active case-finding interventions for tuberculosis: a systematic review. Lancet Public Health. 2021;6(5):e283–ee99. doi: 10.1016/S2468-2667(21)00033-5.
    1. Programme NTE, India TB. Report New Delhi. India: Central TB Division, Ministry of Health and Family Welfare; 2021.
    1. Golub JE, Dowdy DW. Screening for active tuberculosis: methodological challenges in implementation and evaluation. Int J Tuberc Lung Dis. 2013;17(7):856–865. doi: 10.5588/ijtld.13.0059.
    1. Ayles H, Muyoyeta M, Du Toit E, Schaap A, Floyd S, Simwinga M, et al. Effect of household and community interventions on the burden of tuberculosis in southern Africa: the ZAMSTAR community-randomised trial. Lancet. 2013;382(9899):1183–1194. doi: 10.1016/S0140-6736(13)61131-9.
    1. Havumaki J, Cohen T, Zhai C, Miller JC, Guikema SD, Eisenberg MC, et al. Protective impacts of household-based tuberculosis contact tracing are robust across endemic incidence levels and community contact patterns. PLoS Comput Biol. 2021;17(2):e1008713. doi: 10.1371/journal.pcbi.1008713.
    1. Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322–1327. doi: 10.2105/AJPH.89.9.1322.
    1. Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–226. doi: 10.1097/MLR.0b013e3182408812.
    1. Ministry of Health and Family Welfare (MoHFW) GoI. Technical and Operational Guidelines for TB Control in India: Chapter 3-Case finding & Diagnosis Strategy. New Delhi, India; 2016.
    1. WHO . Definitions and reporting framework for tuberculosis - 2013 revision. Geneva: World Health Organization; 2013.
    1. Paradkar M, Padmapriyadarsini C, Jain D, Shivakumar S, Thiruvengadam K, Gupte AN, et al. Tuberculosis preventive treatment should be considered for all household contacts of pulmonary tuberculosis patients in India. PLoS One. 2020;15(7):e0236743. doi: 10.1371/journal.pone.0236743.
    1. Belgaumkar V, Chandanwale A, Valvi C, Pardeshi G, Lokhande R, Kadam D, et al. Barriers to screening and isoniazid preventive therapy for child contacts of tuberculosis patients. Int J Tuberc Lung Dis. 2018;22(10):1179–1187. doi: 10.5588/ijtld.17.0848.
    1. Elf JL, Kinikar A, Khadse S, Mave V, Suryavanshi N, Gupte N, et al. Sources of household air pollution and their association with fine particulate matter in low-income urban homes in India. J Expo Sci Environ Epidemiol. 2018;28(4):400–410. doi: 10.1038/s41370-018-0024-2.
    1. Gupte A, Padmapriyadarsini C, Mave V, Kadam D, Suryavanshi N, Shivakumar SV, et al. Cohort for tuberculosis research by the indo-US medical partnership (CTRIUMPH): protocol for a multicentric prospective observational study. BMJ Open. 2016;6(2):e010542. doi: 10.1136/bmjopen-2015-010542.
    1. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br J Addict. 1991;86(9):1119–1127. doi: 10.1111/j.1360-0443.1991.tb01879.x.
    1. Nayak MB, Bond JC, Cherpitel C, Patel V, Greenfield TK. Detecting alcohol-related problems in developing countries: a comparison of 2 screening measures in India. Alcohol Clin Exp Res. 2009;33(12):2057–2066. doi: 10.1111/j.1530-0277.2009.01045.x.
    1. May C. A rational model for assessing and evaluating complex interventions in health care. BMC Health Serv Res. 2006;6:86. doi: 10.1186/1472-6963-6-86.
    1. May CR, Mair FS, Dowrick CF, Finch TL. Process evaluation for complex interventions in primary care: understanding trials using the normalization process model. BMC Fam Pract. 2007;8:42. doi: 10.1186/1471-2296-8-42.
    1. May CR, Mair F, Finch T, MacFarlane A, Dowrick C, Treweek S, et al. Development of a theory of implementation and integration: normalization process theory. Implement Sci. 2009;4:29. doi: 10.1186/1748-5908-4-29.
    1. Sekhon M, Cartwright M, Francis JJ. Acceptability of healthcare interventions: an overview of reviews and development of a theoretical framework. BMC Health Serv Res. 2017;17(1):88. doi: 10.1186/s12913-017-2031-8.
    1. Cunnama L, Garcia Baena I, Gomez G, Laurence Y, Levin C, Siapka M, et al. Costing guidelines for tuberculosis interventions. 2019.
    1. Alsdurf H, Oxlade O, Adjobimey M, Ahmad Khan F, Bastos M, Bedingfield N, et al. Resource implications of the latent tuberculosis cascade of care: a time and motion study in five countries. BMC Health Serv Res. 2020;20(1):341. doi: 10.1186/s12913-020-05220-7.
    1. Tampi RP, Tembo T, Mukumba-Mwenechanya M, Sharma A, Dowdy DW, Holmes CB, et al. Operational characteristics of antiretroviral therapy clinics in Zambia: a time and motion analysis. BMC Health Serv Res. 2019;19(1):244. doi: 10.1186/s12913-019-4096-z.
    1. Hsiang E, Little KM, Haguma P, Hanrahan CF, Katamba A, Cattamanchi A, et al. Higher cost of implementing Xpert(®) MTB/RIF in Ugandan peripheral settings: implications for cost-effectiveness. Int J Tuberc Lung Dis. 2016;20(9):1212–1218. doi: 10.5588/ijtld.16.0200.
    1. Kim HY, Hanrahan CF, Martinson N, Golub JE, Dowdy DW. Cost-effectiveness of universal isoniazid preventive therapy among HIV-infected pregnant women in South Africa. Int J Tuberc Lung Dis. 2018;22(12):1435–1442. doi: 10.5588/ijtld.18.0370.
    1. Sohn H, Tucker A, Ferguson O, Gomes I, Dowdy D. Costing the implementation of public health interventions in resource-limited settings: a conceptual framework. Implement Sci. 2020;15(1):86. doi: 10.1186/s13012-020-01047-2.
    1. World Health O . Tuberculosis patient cost surveys: a handbook. Geneva: World Health Organization 2017; 2017.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Jones P. FY. St. George’s respiratory questionnaire manual. London SGsUo, editor.: In; 2009.
    1. Jones PW, Quirk FH, Baveystock CM. The St George’s respiratory questionnaire. Respir Med. 1991;85 Suppl B:25–31. doi: 10.1016/S0954-6111(06)80166-6.
    1. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline LN. Development and first validation of the COPD assessment test. Eur Respir J. 2009;34(3):648. doi: 10.1183/09031936.00102509.
    1. Maxwell JA. Qualitative research design : an interactive approach: Third edition. Thousand Oaks: SAGE Publications, [2013] ©2013; 2013.
    1. Kendall EA, Schumacher SG, Denkinger CM, Dowdy DW. Estimated clinical impact of the Xpert MTB/RIF ultra cartridge for diagnosis of pulmonary tuberculosis: a modeling study. PLoS Med. 2017;14(12):e1002472. doi: 10.1371/journal.pmed.1002472.
    1. Azadi M, Bishai DM, Dowdy DW, Moulton LH, Cavalcante S, Saraceni V, et al. Cost-effectiveness of tuberculosis screening and isoniazid treatment in the TB/HIV in Rio (THRio) study. Int J Tuberc Lung Dis. 2014;18(12):1443–1448. doi: 10.5588/ijtld.14.0108.
    1. Johnson KT, Churchyard GJ, Sohn H, Dowdy DW. Cost-effectiveness of preventive therapy for tuberculosis with isoniazid and rifapentine versus isoniazid alone in high-burden settings. Clin Infect Dis. 2018;67(7):1072–1078. doi: 10.1093/cid/ciy230.
    1. Murray M, Cattamanchi A, Denkinger C, Van't Hoog A, Pai M, Dowdy D. Cost-effectiveness of triage testing for facility-based systematic screening of tuberculosis among Ugandan adults. BMJ Glob Health. 2016;1(2):e000064. doi: 10.1136/bmjgh-2016-000064.
    1. Kendall EA, Shrestha S, Cohen T, Nuermberger E, Dooley KE, Gonzalez-Angulo L, et al. Priority-setting for novel drug regimens to treat tuberculosis: an epidemiologic model. PLoS Med. 2017;14(1):e1002202. doi: 10.1371/journal.pmed.1002202.
    1. Subbaraman R, Nathavitharana RR, Satyanarayana S, Pai M, Thomas BE, Chadha VK, et al. The tuberculosis cascade of care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 2016;13(10):e1002149. doi: 10.1371/journal.pmed.1002149.
    1. Martinez L, Shen Y, Mupere E, Kizza A, Hill PC, Whalen CC. Transmission of mycobacterium tuberculosis in households and the community: a systematic review and meta-analysis. Am J Epidemiol. 2017;185(12):1327–1339. doi: 10.1093/aje/kwx025.
    1. Narasimhan P, MacIntyre CR, Mathai D, Wood J. High rates of latent TB infection in contacts and the wider community in South India. Trans R Soc Trop Med Hyg. 2017;111(2):55–61. doi: 10.1093/trstmh/trx016.
    1. Fojo AT, Kendall EA, Kasaie P, Shrestha S, Louis TA, Dowdy DW. Mathematical modeling of “chronic” infectious diseases: unpacking the black box. Open Forum Infect Dis Ther. 2017;4(4):ofx172. doi: 10.1093/ofid/ofx172.
    1. Wingfield T, Boccia D, Tovar M, Gavino A, Zevallos K, Montoya R, et al. Defining catastrophic costs and comparing their importance for adverse tuberculosis outcome with multi-drug resistance: a prospective cohort study, Peru. PLoS Med. 2014;11(7):e1001675. doi: 10.1371/journal.pmed.1001675.
    1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1736–88.
    1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-858.
    1. WHO, Baltussen RMPM, Adam T, Tan-Torres Edejer T, Hutubessy RCW, Acharya A, et al. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003.
    1. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. Jama. 2016;316(10):1093–1103. doi: 10.1001/jama.2016.12195.
    1. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated Health economic evaluation reporting standards (CHEERS) statement. Cost Effect Res Allocation. 2013;11(1):6. doi: 10.1186/1478-7547-11-6.
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343. doi: 10.1183/09031936.00080312.

Source: PubMed

3
Abonner