Neuroinflammation in cognitive decline post-cardiac surgery (the FOCUS study): an observational study protocol

Annemieke M Peters van Ton, Harmke B Duindam, Julia van Tuijl, Wilson Wl Li, Hendrik-Jan Dieker, Niels P Riksen, Fj Anton Meijer, Roy Pc Kessels, Nils Kohn, Johannes G van der Hoeven, Peter Pickkers, Mark Rijpkema, Wilson F Abdo, Annemieke M Peters van Ton, Harmke B Duindam, Julia van Tuijl, Wilson Wl Li, Hendrik-Jan Dieker, Niels P Riksen, Fj Anton Meijer, Roy Pc Kessels, Nils Kohn, Johannes G van der Hoeven, Peter Pickkers, Mark Rijpkema, Wilson F Abdo

Abstract

Introduction: Postoperative cognitive dysfunction occurs frequently after coronary artery bypass grafting (CABG). The underlying mechanisms remain poorly understood, but neuroinflammation might play a pivotal role. We hypothesise that systemic inflammation induced by the surgical trauma could activate the innate immune (glial) cells of the brain. This could lead to an exaggerated neuroinflammatory cascade, resulting in neuronal dysfunction and loss of neuronal cells. Therefore, the aims of this study are to assess neuroinflammation in vivo presurgery and postsurgery in patients undergoing major cardiac surgery and investigate whether there is a relationship of neuroinflammation to cognitive outcomes, changes to brain structure and function, and systemic inflammation.

Methods and analysis: The FOCUS study is a prospective, single-centre observational study, including 30 patients undergoing elective on-pump CABG. Translocator protein (TSPO) positron emission tomography neuroimaging will be performed preoperatively and postoperatively using the second generation tracer 18F-DPA-714 to assess the neuroinflammatory response. In addition, a comprehensive cerebral MRI will be performed presurgery and postsurgery, in order to discover newly developed brain and vascular wall lesions. Up to 6 months postoperatively, serial extensive neurocognitive assessments will be performed and blood will be obtained to quantify systemic inflammatory responses and peripheral immune cell activation.

Ethics and dissemination: Patients do not benefit directly from engaging in the study, but imaging neuroinflammation is considered safe and no side effects are expected. The study protocol obtained ethical approval by the Medical Research Ethics Committee region Arnhem-Nijmegen. This work will be published in peer-reviewed international medical journals and presented at medical conferences.

Trial registration number: NCT04520802.

Keywords: cardiac surgery; delirium & cognitive disorders; immunology; intensive & critical care; nuclear medicine.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

References

    1. Greaves D, Psaltis PJ, Ross TJ, et al. . Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients. Int J Cardiol 2019;289:43–9. 10.1016/j.ijcard.2019.04.065
    1. Berger M, Terrando N, Smith SK, et al. . Neurocognitive function after cardiac surgery: from phenotypes to mechanisms. Anesthesiology 2018;129:829–51. 10.1097/ALN.0000000000002194
    1. Brown CH, Probert J, Healy R, et al. . Cognitive decline after delirium in patients undergoing cardiac surgery. Anesthesiology 2018;129:406–16. 10.1097/ALN.0000000000002253
    1. Sauër AC, Veldhuijzen DS, Ottens TH, et al. . Association between delirium and cognitive change after cardiac surgery. Br J Anaesth 2017;119:308–15. 10.1093/bja/aex053
    1. Bruce K, Smith JA, Yelland G, et al. . The impact of cardiac surgery on cognition. Stress and Health 2008;24:249–66. 10.1002/smi.1204
    1. Lee TA, Wolozin B, Weiss KB, et al. . Assessment of the emergence of Alzheimer's disease following coronary artery bypass graft surgery or percutaneous transluminal coronary angioplasty. J Alzheimers Dis 2005;7:319–24. 10.3233/JAD-2005-7408
    1. Wan Y, Xu J, Ma D, et al. . Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 2007;106:436–43. 10.1097/00000542-200703000-00007
    1. Cibelli M, Fidalgo AR, Terrando N, et al. . Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 2010;68:360–8. 10.1002/ana.22082
    1. Cao X-Z, Ma H, Wang J-K, et al. . Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1426–32. 10.1016/j.pnpbp.2010.07.027
    1. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017;60:1–12. 10.1016/j.bbi.2016.03.010
    1. D'Mello C, Swain MG. Immune-to-Brain communication pathways in inflammation-associated sickness and depression. Curr Top Behav Neurosci 2017;31:73–94. 10.1007/7854_2016_37
    1. Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014;10:217–24. 10.1038/nrneurol.2014.38
    1. Wendeln A-C, Degenhardt K, Kaurani L, et al. . Innate immune memory in the brain shapes neurological disease hallmarks. Nature 2018;556:332–8. 10.1038/s41586-018-0023-4
    1. Dheen ST, Kaur C, Ling E-A. Microglial activation and its implications in the brain diseases. Curr Med Chem 2007;14:1189–97. 10.2174/092986707780597961
    1. Streit WJ, Mrak RE, Griffin WST. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004;1:14. 10.1186/1742-2094-1-14
    1. Turkheimer FE, Rizzo G, Bloomfield PS, et al. . The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015;43:586–92. 10.1042/BST20150058
    1. Song YS. Perspectives in TSPO PET imaging for neurologic diseases. Nucl Med Mol Imaging 2019;53:382–5. 10.1007/s13139-019-00620-y
    1. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 2002;40:475–86. 10.1016/S0197-0186(01)00118-8
    1. Lee Y, Park Y, Nam H, et al. . Translocator protein (TSPO): the new story of the old protein in neuroinflammation. BMB Rep 2020;53:20–7. 10.5483/BMBRep.2020.53.1.273
    1. Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: a meta-analysis. Ageing Res Rev 2019;50:1–8. 10.1016/j.arr.2019.01.002
    1. Plavén-Sigray P, Matheson GJ, Collste K, et al. . Positron emission tomography studies of the glial cell marker translocator protein in patients with psychosis: a meta-analysis using individual participant data. Biol Psychiatry 2018;84:433–42. 10.1016/j.biopsych.2018.02.1171
    1. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 2019;81:24–40. 10.1016/j.bbi.2019.06.015
    1. Sandiego CM, Gallezot J-D, Pittman B, et al. . Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 2015;112:12468–73. 10.1073/pnas.1511003112
    1. Forsberg A, Cervenka S, Jonsson Fagerlund M, et al. . The immune response of the human brain to abdominal surgery. Ann Neurol 2017;81:572–82. 10.1002/ana.24909
    1. Nettis MA, Veronese M, Nikkheslat N, et al. . PET imaging shows no changes in TSPO brain density after IFN-α immune challenge in healthy human volunteers. Transl Psychiatry 2020;10:89. 10.1038/s41398-020-0768-z
    1. Peters van Ton AM, Leijte GP, Franssen GM, et al. . Human in vivo neuroimaging to detect reprogramming of the cerebral immune response following repeated systemic inflammation. Brain Behav Immun 2021. 10.1016/j.bbi.2021.04.004. [Epub ahead of print: 09 Apr 2021].
    1. Newman MF, Kirchner JL, Phillips-Bute B, et al. . Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 2001;344:395–402. 10.1056/NEJM200102083440601
    1. Glumac S, Kardum G, Karanovic N. Postoperative cognitive decline after cardiac surgery: a narrative review of current knowledge in 2019. Med Sci Monit 2019;25:3262–70. 10.12659/MSM.914435
    1. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013;39:19–34. 10.1111/j.1365-2990.2012.01306.x
    1. Owen DR, Yeo AJ, Gunn RN, et al. . An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012;32:1–5. 10.1038/jcbfm.2011.147
    1. Charlson ME, Pompei P, Ales KL, et al. . A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–83. 10.1016/0021-9681(87)90171-8
    1. Quan H, Li B, Couris CM, et al. . Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge Abstracts using data from 6 countries. Am J Epidemiol 2011;173:676–82. 10.1093/aje/kwq433
    1. Owen DRJ, Gunn RN, Rabiner EA, et al. . Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 2011;52:24–32. 10.2967/jnumed.110.079459
    1. Hermans EJ, Henckens MJAG, Joëls M, et al. . Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci 2014;37:304–14. 10.1016/j.tins.2014.03.006
    1. Kohn N, Hermans EJ, Fernández G. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Soc Cogn Affect Neurosci 2017;12:1179–87. 10.1093/scan/nsx043
    1. Browndyke JN, Berger M, Harshbarger TB, et al. . Resting-State functional connectivity and cognition after major cardiac surgery in older adults without preoperative cognitive impairment: preliminary findings. J Am Geriatr Soc 2017;65:e6–12. 10.1111/jgs.14534
    1. Hoedemaekers C, van Deuren M, Sprong T, et al. . The complement system is activated in a biphasic pattern after coronary artery bypass grafting. Ann Thorac Surg 2010;89:710–6. 10.1016/j.athoracsur.2009.11.049
    1. Hoedemaekers CW, Pickkers P, Netea MG, et al. . Intensive insulin therapy does not alter the inflammatory response in patients undergoing coronary artery bypass grafting: a randomized controlled trial [ISRCTN95608630]. Crit Care 2005;9:R790–7. 10.1186/cc3911
    1. Leijte GP, Custers H, Gerretsen J, et al. . Increased plasma levels of danger-associated molecular patterns are associated with immune suppression and postoperative infections in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Front Immunol 2018;9:663. 10.3389/fimmu.2018.00663
    1. Noz MP, Hartman YAW, Hopman MTE, et al. . Sixteen-Week physical activity intervention in subjects with increased cardiometabolic risk shifts innate immune function towards a less proinflammatory state. J Am Heart Assoc 2019;8:e013764. 10.1161/JAHA.119.013764
    1. Leijte GP, Rimmelé T, Kox M, et al. . Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit Care 2020;24:110. 10.1186/s13054-020-2830-x
    1. Murkin JM, Newman SP, Stump DA, et al. . Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg 1995;59:1289–95. 10.1016/0003-4975(95)00106-U
    1. Beglinger LJ, Gaydos B, Tangphao-Daniels O, et al. . Practice effects and the use of alternate forms in serial neuropsychological testing. Arch Clin Neuropsychol 2005;20:517–29. 10.1016/j.acn.2004.12.003
    1. Ely EW, Margolin R, Francis J, et al. . Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med 2001;29:1370–9. 10.1097/00003246-200107000-00012
    1. Schuurmans M, Donders AR, Shortridge-Baggett LM, et al. . Delirium case finding: pilot testing of a new screening scale for nurses. J Am Geriatr Soc 2002;50:S3.
    1. Schuurmans MJ, Shortridge-Baggett LM, Duursma SA. The delirium observation screening scale: a screening instrument for delirium. Res Theory Nurs Pract 2003;17:31–50. 10.1891/rtnp.17.1.31.53169
    1. American Psychiatric Association, . Diagnostic and statistical manual of mental disorders. 5th Edition. Arlington, VA: American Psychiatric, 2013.
    1. Rudolph JL, Schreiber KA, Culley DJ, et al. . Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand 2010;54:663–77. 10.1111/j.1399-6576.2010.02236.x
    1. Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth 2017;119:i115–25. 10.1093/bja/aex354
    1. van den Berg E, Kessels RPC, de Haan EHF, et al. . Mild impairments in cognition in patients with type 2 diabetes mellitus: the use of the concepts MCI and CIND. J Neurol Neurosurg Psychiatry 2005;76:1466–7. 10.1136/jnnp.2005.062737
    1. Reukers DFM, Aaronson J, van Loenhout JAF, et al. . Objective cognitive performance and subjective complaints in patients with chronic Q fever or Q fever fatigue syndrome. BMC Infect Dis 2020;20:397. 10.1186/s12879-020-05118-z
    1. Hervé D, Mangin J-F, Molko N, et al. . Shape and volume of lacunar infarcts: a 3D MRI study in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2005;36:2384–8. 10.1161/01.STR.0000185678.26296.38
    1. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51. 10.1016/j.neuroimage.2005.02.018
    1. Jenkinson M, Beckmann CF, Behrens TEJ, et al. . FSL. Neuroimage 2012;62:782–90. 10.1016/j.neuroimage.2011.09.015
    1. Suridjan I, Pollock BG, Verhoeff NPLG, et al. . In-vivo imaging of grey and white matter neuroinflammation in Alzheimer's disease: a positron emission tomography study with a novel radioligand, [18F]-FEPPA. Mol Psychiatry 2015;20:1579–87. 10.1038/mp.2015.1
    1. Varrone A, Oikonen V, Forsberg A, et al. . Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects. Eur J Nucl Med Mol Imaging 2015;42:438–46. 10.1007/s00259-014-2955-8
    1. Berger M, Oyeyemi D, Olurinde MO, et al. . The INTUIT study: investigating neuroinflammation underlying postoperative cognitive dysfunction. J Am Geriatr Soc 2019;67:794–8. 10.1111/jgs.15770
    1. Danielson M, Wiklund A, Granath F, et al. . Neuroinflammatory markers associate with cognitive decline after major surgery: findings of an explorative study. Ann Neurol 2020;87:370–82. 10.1002/ana.25678
    1. Nelson HE, O'Connell A. Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex 1978;14:234–44. 10.1016/S0010-9452(78)80049-5
    1. Partington JE, Leiter RG. Partington’s pathways test. Psychological Service Center Journal 1949;1:11–20.
    1. Reitan RM, Wolfson D. The halstead-reitan neuropsychological test battery. Tuscon, AZ: Neuropsychological Press, 1985.
    1. Larrabee GJ, Millis SR, Meyers JE. Sensitivity to brain dysfunction of the Halstead-Reitan vs an ability-focused neuropsychological battery. Clin Neuropsychol 2008;22:813–25. 10.1080/13854040701625846
    1. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol 1935;18:643–62. 10.1037/h0054651
    1. Kessels RPC, Molleman PW, Oosterman JM. Assessment of working-memory deficits in patients with mild cognitive impairment and Alzheimer's dementia using Wechsler's working memory index. Aging Clin Exp Res 2011;23:487–90. 10.1007/BF03325245
    1. Wechsler D. Wechsler adult intelligence Scale-Fourth edition-Nederlandse bewerking. Technische handleiding en Afname en scorehandleiding. Amsterdam: Pearson Assessment and Information BV, 2012.
    1. Natu MV, Agarwal AK. Digit letter substitution test (DLST) as an alternative to digit symbol substitution test (DSST). Hum Psychopharmacol 1995;10:339–43. 10.1002/hup.470100414
    1. Jolles J, Houx PJ, van Boxtel MPJ. e.a., the Maastricht aging study: determinants of cognitive aging. Maastricht: Neuropsych Publishers, 1995.
    1. Schmidt M. Rey auditory verbal learning test: Ravlt: a Handbook. Los Angeles: Western Psychological Services, 1996.
    1. Saan RJ, Deelman BG. De 15-woordentest A en B. Afdeling Neuropsychologie, AZG: Groningen, 1986.
    1. Rey A. Psychological examination of traumatic encephalopathy. Clinical Neuropsychologist 1993;7:3–21.
    1. Meyers JE, Meyers KR. Rey complex figure test and recognition trial: professional manual. Odessa: Psychological Assessment Resources, 1995.
    1. Wilson B, Cockburn J, Baddeley A. The Rivermead behavioural memory test manual. Bury St Edmunds: Thames Valley Test Co, 1985.
    1. Mulder JLD, P.H.; Dekker R. Word-fluency test/figure fluency test (wft/fft). PITS Uitgeverij BV: Leiden, 2006.
    1. De Renzi E, Faglioni P. Normative data and screening power of a shortened version of the Token test. Cortex 1978;14:41–9. 10.1016/S0010-9452(78)80006-9
    1. Jorm AF, Jacomb PA. The informant questionnaire on cognitive decline in the elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychol Med 1989;19:1015–22. 10.1017/S0033291700005742
    1. Rockwood K, Song X, MacKnight C, et al. . A global clinical measure of fitness and frailty in elderly people. CMAJ 2005;173:489–95. 10.1503/cmaj.050051
    1. Hays RD, Sherbourne CD, Mazel RM. The Rand 36-Item health survey 1.0. Health Econ 1993;2:217–27. 10.1002/hec.4730020305
    1. Broadbent DE, Cooper PF, FitzGerald P, et al. . The cognitive failures questionnaire (CFQ) and its correlates. Br J Clin Psychol 1982;21:1–16. 10.1111/j.2044-8260.1982.tb01421.x
    1. Spinhoven P, Ormel J, Sloekers PP, et al. . A validation study of the hospital anxiety and depression scale (HADS) in different groups of Dutch subjects. Psychol Med 1997;27:363–70. 10.1017/S0033291796004382
    1. Creamer M, Bell R, Failla S. Psychometric properties of the Impact of Event Scale - Revised. Behav Res Ther 2003;41:1489–96. 10.1016/j.brat.2003.07.010

Source: PubMed

3
Abonner