trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals

E K Maloney, D J Waxman, E K Maloney, D J Waxman

Abstract

A large number of industrial chemicals and environmental pollutants, including trichloroethylene (TCE), di(2-ethylhexyl)phthalate (DEHP), perfluorooctanoic acid (PFOA), and various phenoxyacetic acid herbicides, are nongenotoxic rodent hepatocarcinogens whose human health risk is uncertain. Rodent model studies have identified the receptor involved in the hepatotoxic and hepatocarcinogenic actions of these chemicals as peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor that is highly expressed in liver. Humans exhibit a weak response to these peroxisome proliferator chemicals, which in part results from the relatively low level of PPARalpha expression in human liver. Cell transfection studies were carried out to investigate the interactions of peroxisome proliferator chemicals with PPARalpha, cloned from human and mouse, and with PPARgamma, a PPAR isoform that is highly expressed in multiple human tissues and is an important regulator of physiological processes such as adipogenesis and hematopoiesis. With three environmental chemicals, TCE, perchloroethylene, and DEHP, PPARalpha was found to be activated by metabolites, but not by the parent chemical. A decreased sensitivity of human PPARalpha compared to mouse PPARalpha to trans-activation was observed with some (Wy-14, 643, PFOA), but not other, peroxisome proliferators (TCE metabolites, trichloroacetate and dichloroacetate; and DEHP metabolites, mono[2-ethylhexyl]phthalate and 2-ethylhexanoic acid). Investigation of human and mouse PPARgamma revealed the transcriptional activity of this receptor to be stimulated by mono(2-ethylhexyl)phthalate, a DEHP metabolite that induces developmental and reproductive organ toxicities in rodents. This finding suggests that PPARgamma, which is highly expressed in human adipose tissue, where many lipophilic foreign chemicals tend to accumulate, as well as in colon, heart, liver, testis, spleen, and hematopoietic cells, may be a heretofore unrecognized target in human cells for a subset of industrial and environmental chemicals of the peroxisome proliferator class.

Copyright 1999 Academic Press.

Source: PubMed

3
Abonner