Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future

R J W Hoogendoorn, Z F Lu, R J Kroeze, R A Bank, P I Wuisman, M N Helder, R J W Hoogendoorn, Z F Lu, R J Kroeze, R A Bank, P I Wuisman, M N Helder

Abstract

New regenerative treatment strategies are being developed for intervertebral disc degeneration of which the implantation of various cell types is promising. All cell types used so far require in vitro expansion prior to clinical use, as these cells are only limited available. Adipose-tissue is an abundant, expendable and easily accessible source of mesenchymal stem cells. The use of these cells therefore eliminates the need for in vitro expansion and subsequently one-step regenerative treatment strategies can be developed. Our group envisioned, described and evaluated such a one-step procedure for spinal fusion in the goat model. In this review, we summarize the current status of cell-based treatments for intervertebral disc degeneration and identify the additional research needed before adipose-derived mesenchymal stem cells can be evaluated in a one-step procedure for regenerative treatment of the intervertebral disc. We address the selection of stem cells from the stromal vascular fraction, the specific triggers needed for cell differentiation and potential suitable scaffolds. Although many factors need to be studied in more detail, potential application of a one-step procedure for intervertebral disc regeneration seems realistic.

Figures

Figure 1
Figure 1
Concept of a one-step surgical procedure. The surgery starts with harvesting of the adipose tissue, followed by a split procedure. The surgeon continues the surgery, whereas the tissue engineer isolates the stem cell-containing cell population from the adipose tissue, treat the cells to induce differentiation into the proper phenotype, and seeds the stimulated cells on the scaffold. The surgeon then implants the scaffold containing the stem cells, and finishes the surgery. The whole procedure takes approximately two hours.
Figure 2
Figure 2
Effects of micromass NP cells on the differentiation related gene expression of ASCs in monolayer or micromass. A: NP cells only significantly down-regulated the gene expression of osteopontin and type I collagen in monolayer ASCs, but they significantly up-regulated the gene expression of aggrecan and concomitantly down-regulate the gene expression of osteopontin, type I collagen and PPAR-γ in micromass ASCs; the data are expressed as means ± sd, n = 3; the dash line represents time-point zero. B: Gene expression of type II collagen was only induced in the group where both ASCs and NP cells were cultured in micro masses. *: Significant difference (p < 0.05). NP cells: Nucleus pul-posus cells; ASCs: Adipose mesenchymal stem cells. Mono: monolayer, MM: micro mass. AGG: aggrecan, COL II: type II collagen, COL I: type I collagen, PPAR-γ: peroxisome proliferator-activated receptor gamma. (Reprinted from Biochemical and Biophysical Research Communications, vol. 359, Lu ZF, Zandieh Doulabi B, Wuisman PI, Bank RA and Helder MN, Differentiation of adipose stem cells b ynucleus pulposus cells: configuration effects., p. 991–6, 2007 with permission from Elsevier.)
Figure 3
Figure 3
Figure A shows a confocal image of SVF cells attaching to the inner pore of a 70:30 Poly(D,L-lactide-co-caprolac-tone) scaffold. After allowing the heterogeneous mixture of SVF cells to attach to the scaffold for one hour, cells were fixated and stained for CD34 (green). The nuclei of all attached cells were stained with propidium iodide as a counter stain (red). Figure B shows the exact same picture in which the scaffold was not visualized for clarity reasons.

References

    1. Dreinhofer KE. The Bone and Joint Decade 2000–2010 – How Far Have We Come? European musculoskeletal review. 2006;(Sept):12–7.
    1. Cowan CM, Aalami OO, Shi YY, Chou YF, Mari C, Thomas R, Quarto N, Nacamuli RP, Contag CH, Wu B, Longaker MT. Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteo-clast recruitment, and bone turnover. Tissue Eng. 2005;11:645–58.
    1. Evans CH, Rosier RN. Molecular biology in orthopaedics: the advent of molecular orthopaedics. J Bone Joint Surg Am. 2005;87:2550–64.
    1. Bao QB, McCullen GM, Higham PA, Dumbleton JH, Yuan HA. The artificial disc: theory, design and materials. Biomaterials. 1996;17:1157–67.
    1. Frick SL, Hanley EN, Jr, Meyer RA, Jr, Ramp WK, Chapman TM. Lumbar inter-vertebral disc transfer. A canine study. Spine. 1994;19:1826–34.
    1. Melrose J, Roberts S, Smith S, Menage J, Ghosh P. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine. 2002;27:1278–85.
    1. Osti OL, Vernon-Roberts B, Moore R, Fraser RD. Annular tears and disc degeneration in the lumbar spine. A postmortem study of 135 discs. J Bone Joint SurgBr. 1992;74:678–82.
    1. Adams MA, Roughley PJ. What is inter-vertebral disc degeneration, and what causes it? Spine. 2006;31:2151–61.
    1. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine. 1995;20:1307–14.
    1. Kraemer J. Natural course and prognosis of intervertebral disc diseases. International Society for the Study of the Lumbar Spine Seattle, Washington, June 1994. Spine. 1995;20:635–9.
    1. Ala-Kokko L. Genetic risk factors for lumbar disc disease. Ann Med. 2002;34:42–7.
    1. Battie MC, Videman T, Gill K, Moneta GB, Nyman R, Kaprio J, Koskenvuo M. 1991 Volvo Award in clinical sciences. Smoking and lumbar intervertebral disc degeneration: an MRI study of identical twins. Spine. 1991;16:1015–21.
    1. Battie MC, Videman T, Gibbons LE, Manninen H, Gill K, Pope M, Kaprio J. Occupational driving and lumbar disc degeneration: a case-control study. Lancet. 2002;360:1369–74.
    1. Videman T, Battie MC. The influence of occupation on lumbar degeneration. Spine. 1999;24:1164–8.
    1. Gibson JN. Watltlell G. Surgery for degenerative lumbar spondylosis: updated Cochrane Review. Spine. 2005;30:2312–20.
    1. Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J. 2006;15:S406–S413.
    1. Masuda K, Oegema TR., Jr An HS. Growth factors and treatment of intervertebral disc degeneration. Spine. 2004;29:2757–69.
    1. Masuda K, An HS. Prevention of disc degeneration with growth factors. Eur Spine J. 2006;15:S422–32.
    1. Paesold G, Nerlich AG, Boos N. Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J. 2007;16:447–68.
    1. Yoon ST, Patel NM. Molecular therapy of the intervertebral disc. Eur Spine J. 2006;15:S379–88.
    1. Lee JY, Hall R, Pelinkovic D, Cassinelli E, Usas A, Gilbertson L, Huard J, Kang J. New use of a three-dimensional pellet culture system for human intervertebral disc cells: initial characterization and potential use for tissue engineering. Spine. 2001;26:2316–22.
    1. Nishida K. Kang JD. Gilbertson LG. Moon SH. Suh JK. Vogt MT. Robbins PD. Evans CH. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine. 1999;24:2419–25.
    1. Tan Y, Hu Y, Tan J. Extracellular matrix synthesis and ultrastructural changes of degenerative disc cells transfected by Ad/CMV-hTGF-beta 1. Chin Med J (Engl) 2003;116:1399–403.
    1. Masuda K. Takegami K. An H. Kumano F. Chiba K. Andersson GB. Schmid T. Thonar E. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res. 2003;21:922–30.
    1. Zhang Y. An HS. Song S. Toofanfard M. Masuda K. Andersson GB, Thonar EJ. Growth factor osteogenic protein-1: differing effects on cells from three distinct zones in the bovine intervertebral disc. Am J Phys Med Rehabil. 2004;83:515–21.
    1. Chujo T. An HS, Akeda K. Miyamoto K. Muehleman C. Attawia M. Andersson G. Masuda K. Effects of growth differentiation factor-5 on the intervertebral discm vitro bovine study and in vivo rabbit disc degeneration model study. Spine. 2006;31:2909–17.
    1. Walsh AJ, Bradford DS, Lotz JC. in vivo growth factor treatment of degenerated intervertebral discs. Spine. 2004;29:156–63.
    1. Thompson JP. Oegema TR., Jr Bradford DS. Stimulation of mature canine intervertebral disc by growth factors. Spine. 1991;16:253–60.
    1. Yoon ST, Park JS, Kim KS, Li J, Attallah-Wasif ES, Hutton WC, Boden SD. ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine. 2004;29:2603–11.
    1. Paul R, Haydon RC, Cheng H, Ishikawa A, Nenadovich N, Jiang W, Zhou L, Breyer B, Feng T, Gupta P, He TC, Phillips FM. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine. 2003;28:755–63.
    1. Hatakeyama Y, Nguyen J, Wang X, Nuckolls GH, Shum L. Smad signaling in mesenchymal and chondroprogenitor cells. J Bone Joint Surg Am. 2003;85:13–8.
    1. Nohe A, Keating E, Knaus P, Petersen NO. Signal transduction of bone morpho-genetic protein receptors. Cell Signal. 2004;16:291–9.
    1. Wallach CJ, Sobajima S, Watanabe Y, Kim JS, Georgescu HI, Robbins P, Gilbertson LG, Kang JD. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine. 2003;28:2331–7.
    1. Okuma M, An HS, Nakagawa K, Akeda K, Muehleman C. Oral administartion of esculetin prodrug inhibits intervertebral disc degeneration in the rabbit annular needle puncture model. Orthopaedic Research Society Transactions. 2005:370.
    1. Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, Hutton WC. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine. 2003;28:2609–20.
    1. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN., Jr Autologous intervertebral disc cell implantation: a model using Psammomys obesus: the sand rat. Spine. 2002;27:1626–33.
    1. Sato M, Asazuma T, Ishihara M, Ishihara M, Kikuchi T, Kikuchi M, Fujikawa K. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine. 2003;28:548–53.
    1. Gorensek M, Jaksimovic C, Kregar-Velikonja N, Gorensek M, Knezevic M, Jeras M, Pavlovcic V, Cor A. Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett. 2004;9:363–73.
    1. Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003;24:3531–41.
    1. Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine. 2005;30:2379–87.
    1. Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M, Nakai T, Ando K, Hotta T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials. 2006;27:335–45.
    1. Zhang YG, Guo X, Xu P, Kang LL, Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res. 2005:219–26.
    1. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311:1880–5.
    1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.
    1. Semb H. Human embryonic stem cells: origin, properties and applications. APMIS. 2005;113:743–50.
    1. Korbling M, Robinson S, Estrov Z, Champlin R, Shpall E. Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005;7:258–61.
    1. Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM. Stem cells. Lancet. 2005;366:592–602.
    1. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.
    1. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang Jl, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.
    1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP. Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.
    1. Castro-Malaspina H, Ebell W, Wang S. Human bone marrow fibroblast colony-forming units (CFU-F) Prog Clin Biol Res. 1984;154:209–36.
    1. Caplan Al. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11:1198–211.
    1. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, Ritt MJ, van Milligen FJ. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8:166–77.
    1. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L, Casteilla L. From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res. 2006;312:727–36.
    1. Afizah H. Yang Z. Hul JHP, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering. 2007;13:659–66.
    1. Huang Jl, Kazml N, Durbhakula MM, Herlng TM, Yoo JU, Johnstone B. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23:1383–9.
    1. Ogawa R. Fujimura J, Hanawa H. Hlral Y. Kural T. Mlzuno H. Hyakusoku H. Shlmada T. Comparison of stem cells harvested from adipose tissue and bone marrow. Stood. 2005;106:136B.
    1. De Ugarte DA, Morlzono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhalm P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.
    1. Kern S, Elchler H, Stoeve J, Kluter H, Bleback K. Comparative analysis of mesenchymal stem cells from bone marrow: umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.
    1. Shlrasawa S, Seklya I, Sakaguchl Y, Yagishita K, Ichlnose S, Muneta T. in vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97:84–97.
    1. Awad HA, Halvorsen YD, Glmble JM, Guilak F. Effects of transforming growth factor betal and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9:1301–12.
    1. Housman TS, Lawrence N, Mellen BG, George MN, Flllppo JS, Cerveny KA, DeMarco M, Feldman SR, Fleischer AB. The safety of liposuction: results of a national survey. Dermatol Surg. 2002;28:971–8.
    1. Pountos I, Jones E, Tzloupls C, McGonagle D, Giannoudis PV. Growing bone and cartilage. The role of mesenchymal stem cells. J Bone Joint Surg Br. 2006;88:421–6.
    1. Quarto R, Mastroglacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcaccl M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344:385–6.
    1. Helder MN, Knlppenberg M, Kleln-Nulend J, Wuisman PI. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 2007;13:1799–808.
    1. Smlt TH, Krijnen MR, van Dijk M, Wuisman PI. Application of polylactides in spinal cages: studies in a goat model. J Mater Sci Mater Med. 2006;17:1237–44.
    1. van Dijk M, van Diest PJ, Smit TH, Berkhof H, Burger EH, Wuisman PI. Four-year follow-up of poly-L-lactic Acid cages for lumbar interbody fusion in goats. J Long Term Eff Med Implants. 2005;15:125–38.
    1. Wuisman PI, van Dijk M, Smit TH. Resorbable cages for spinal fusion: an experimental goat model. J Neurosurg. 2002;97:433–9.
    1. Knippenberg M, Helder MN, Zandieh DB, Wuisman PI, Klein-Nulend J. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun. 2006;342:902–8.
    1. Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PI, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng. 2005;11:1780–8.
    1. Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells. 2005;23:403–11.
    1. Sive Jl, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol. 2002;55:91–7.
    1. Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells. 2006;24:707–16.
    1. Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H, Hotta T. Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine. 2004;29:1508–14.
    1. Maroudas A, Stockwell RA, Nachemson A, Urban J. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. JAnat. 1975;120:113–30.
    1. Li X, Lee JP, Balian G, Greg AD. Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res. 2005;46:75–82.
    1. Nicoll SB, Wedrychowska A, Smith NR, Bhatnagar RS. Modulation of proteoglycan and collagen profiles in human dermal fibroblasts by high density micromass culture and treatment with lactic acid suggests change to a chondrogenic phenotype. Connect Tissue Res. 2001;42:59–69.
    1. Schulze-Tanzil G, de Souza P, Villegas CH, John T, Merker HJ, Scheid A, Shakibaei M. Redifferentiation of dediffer-entiated human chondrocytes in high-density cultures. Cell Tissue Res. 2002;308:371–9.
    1. Lu ZF, Zandieh DB, Wuisman PI, Bank RA, Helder MN. Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect. Biochem Biophys Res Commun. 2007;359:991–6.
    1. Campbell A, Wicha MS, Long M. Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. J Clin Invest. 1985;75:2085–90.
    1. Huet C, Pisselet C, Mandon-Pepin B, Monget P, Monniaux D. Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function. J Endocrinol. 2001;169:347–60.
    1. Kihara T, Hirose M, Oshima A, Ohgushi H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2006;341:1029–35.
    1. Guiot BH, Fessler RG. Molecular biology of degenerative disc disease. Neurosurgery. 2000;47:1034–40.
    1. Nerlich AG, Boos N, Wiest I, Aebi M. Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch. 1998;432:67–76.
    1. Scully SP, Lee JW, Ghert PMA, Qi W. The role of the extracellular matrix in articular chondrocyte regulation. Clin Orthop Relat Res. 2001:S72–S89.
    1. Van der Kraan PM, Buma P, van KT, Van Den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage. 2002;10:631–7.
    1. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng. 2006;93:1152–63.
    1. Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, Chen WH, Lai WF. Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res. 2005;23:446–53.
    1. Loeser RF. Integrins and cell signaling in chondrocytes. Biorheology. 2002;39:119–24.
    1. Lu ZF, Zandieh DB, Wuisman PI, Bank RA, Helder MN. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells. J Cell Mol Med. 2008 ; in press.
    1. Calvert JW, Marra KG, Cook L, Kumta PN, DiMilla PA, Weiss LE. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J Biomed Mater Res. 2000;52:279–84.
    1. Murphy WL, Hsiong S, Richardson TP, Simmons CA, Mooney DJ. Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells In vitro. Biomaterials. 2005;26:303–10.
    1. Chastain SR, Kundu AK, Dhar S, Calvert JW, Putnam AJ. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A. 2006;78:73–85.
    1. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. J Biomed Biotechnol. 2004;2004:24–34.
    1. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.
    1. Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M. A biological approach to treating disc degeneration: not for today but maybe for tomorrow. Eur Spine J. 2002;11:S215–20.
    1. Mwale F, lordanova M, Demers CN, Steffen T, Roughley P, Antoniou J. Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng. 2005;11:130–40.
    1. Roughley P, Hoemann C, DesRosiers E. Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27:388–96.
    1. Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S. Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng. 2004;32:430–4.
    1. Mizuno H, Roy AK, Vacanti CA, Kojima K. Ueda M, Bonassar LJ. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine. 2004;29:1290–7.
    1. Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials. 2006;27:362–70.
    1. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.
    1. Ishihara H, Urban JP. Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res. 1999;17:829–35.
    1. Bibby SR, Jones DA, Ripley RM, Urban JP. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine. 2005;30:487–96.
    1. Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physio! Cell Physiol. 2006;290:C1139–46.
    1. Robins JC, Akeno N, Mukherjee A, Dalai RR, Aronow BJ, Koopman P, Clemens TL. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005;37:313–22.
    1. Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol. 2003;23:175–94.
    1. Razaq S, Wilkins RJ, Urban JP. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J. 2003;12:341–9.
    1. Lotz JC. Animal models of intervertebral disc degeneration: lessons learned. Spine. 2004;29:2742–50.
    1. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech. 2004;17:64–71.
    1. latridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine. 1999;24:996–1002.
    1. Lipson SJ, Muir H. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine. 1981;6:194–210.
    1. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine. 2005;30:5–14.
    1. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine. 2005;30:15–24.
    1. Cotterill PC, Kostuik JP, D’Angelo G, Fernie GR, Maki BE. An anatomical comparison of the human and bovine thora-columbar spine. J Orthop Res. 1986;4:298–303.
    1. Lim TH, Goel VK, Weinstein JN, Kong W. Stress analysis of a canine spinal motion segment using the finite element technique. J Biomech. 1994;27:1259–69.
    1. Wilke HJ, Kettler A, Wenger KH, Claes LE. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec. 1997;247:542–55.
    1. Hunter CJ, Matyas JR, Duncan NA. Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat. 2004;205:357–62.
    1. PEACOCK A. Observations on the postnatal structure of the intervertebral disc in man. J Anat. 1952;86:162–79.
    1. Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res. 1999;246:129–37.
    1. Hunter CJ, Matyas JR, Duncan NA. The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. JAnat. 2003;202:279–91.
    1. Hoogendoorn RJ, Wuisman P, Smit TH, Everts VE, Helder MN. Experimental Intervertebral Disc Degeneration induced by Chondroitinase ABC in the Goat. Spine. 2007;32:1816–25.
    1. Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O. Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J. 2006;15:S397–05.
    1. Meisel HJ. Siodla V, Ganey T. Minkus Y. Hutton WC. Alasevic OJ. Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc. BiomolEng. 2007;24:5–21.
    1. Nishimura K, Mochida J. Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine. 1998;23:1531–8.
    1. Okuma M. Mochida J, Nishimura K. Sakabe K, Seiki K. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res. 2000;18:988–97.
    1. Noel D. Gazit D. Bouquet C. Apparailly F. Bony C. Plence P. Millet V, Turgeman G. Perricaudet M. Sany J, Jorgensen C. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells. 2004;22:74–85.
    1. Yang M. Ma QJ. Dang GT. Ma K. Chen P. Zhou CY. in vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy. 2005;7:273–81.
    1. Bhardwaj R, Midha R. Synchronous lumbar disc herniation in adult twins. Case report. Can J Neurol Sci. 2004;31:554–7.
    1. Jim JJ. Noponen-Hietala N. Cheung KM, Ott J, Karppinen J, Sahraravand A, Luk KD. Yip SP. Sham PC, Song YQ. Leong JC. Cheah KS. Ala-Kokko L. Chan D. The TRP2 allele of C0L9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine. 2005;30:2735–42.
    1. Sethe S. Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5:91–116.
    1. Nomura T. Mochida J, Okuma M. Nishimura K. Sakabe K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res. 2001:94–101.
    1. Liu H. Kemeny DM, Heng BC. Ouyang HW. Melentlez AJ. Cao T. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol. 2006;176:2864–71.
    1. Ryan JM, Barry FP. Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm. 2005;2:8.
    1. Zhang YG. Guo X, Xu P. Kang LL. Li J. Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res. 2005:219–26.
    1. Homer HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP. Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine. 2002;27:1018–28.
    1. Chiba K, Andersson GB, Masuda K, Thonar EJ. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine. 1997;22:2885–93.
    1. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine. 2004;29:2700–9.
    1. Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD. Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet. 2007;369:993–9.
    1. Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res. 2001:94–101.
    1. Parson A. The long journey from stem cells to medical product. Cell. 2006;125:9–11.
    1. Halme DG, Kessler DA. FDA regulation of stem-cell-based therapies. N Engl J Med. 2006;355:1730–5.

Source: PubMed

3
Abonner