A comprehensive, cell specific microRNA catalogue of human peripheral blood

Simonas Juzenas, Geetha Venkatesh, Matthias Hübenthal, Marc P Hoeppner, Zhipei Gracie Du, Maren Paulsen, Philip Rosenstiel, Philipp Senger, Martin Hofmann-Apitius, Andreas Keller, Limas Kupcinskas, Andre Franke, Georg Hemmrich-Stanisak, Simonas Juzenas, Geetha Venkatesh, Matthias Hübenthal, Marc P Hoeppner, Zhipei Gracie Du, Maren Paulsen, Philip Rosenstiel, Philipp Senger, Martin Hofmann-Apitius, Andreas Keller, Limas Kupcinskas, Andre Franke, Georg Hemmrich-Stanisak

Abstract

With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3' trimming modifications as well as composition of 3' added non-templated nucleotides are distributed in a lineage-specific manner-the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3' end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.

© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

Figures

Figure 1.
Figure 1.
Simplified human hematopoietic tree of different cell compounds (modified from Häggström (69)). The miRNA expression profiles were generated for natural killer (NK) cell (CD56+), B lymphocyte (CD19+), cytotoxic T cell (CD8+), T helper cell (CD4+), monocyte (CD14+), neutrophil (CD15+) and erythrocyte (CD235a+) populations (highlighted in red).
Figure 2.
Figure 2.
The presence of miRNAs in erythrocytes (RBCs), exosomes and serum. The barplot shows the log2 transformed median read counts of the most abundant miRNAs in RBCs. The heatmap represents presence (blue) or absence (red) of miRNAs in specific blood compounds. Only the miRNAs which were detected (expression value > 5) in at least 85% of the samples in at least one of the blood compound were considered as being present.
Figure 3.
Figure 3.
The distributions of isomiR modification types across different blood compounds. (A) 5′ end trimming modification distribution; (B) 3′ end trimming modification distribution; (C) nucleotide substitution modification distribution; (D) 3′ end addition modification distribution. Each dot represents individual sample colored by group. The size of dots indicates the abundance which corresponds to the relative number of molecule copies per modification type and position present in a given sample. The dash (–) symbol indicates the mean frequency of unique sequences per group. The smoothing in figure C was performed using the generalized additive model (GAM) method.
Figure 4.
Figure 4.
The composition of 3′ added nucleotides across the blood compounds. A hierarchical average linkage clustering was used to generate a dendrogram based on relative frequencies of bases per position of the unique sequences, which then were visualized as sequence logos.
Figure 5.
Figure 5.
The similarity structure of human blood cell miRNA transcriptomes. MDS plot showing three clearly resolved clusters corresponding to lymphoid cells (NK cells, B cells, T cells and Th cells), myeloid cells (monocytes and neutrophils) and anucleate erythrocytes. The analysis was performed on miRNA count data using Spearman's correlation distance (1 – correlation coefficient). The dots represent samples coloured by group, while the centre of ellipses corresponds to the group mean and the shapes are defined by the covariance within group.
Figure 6.
Figure 6.
(A) Differentially expressed miRNAs between lymphoid and myeloid cell lineage; (B) expression levels of blood cell lineage-specific miRNAs. Each row of the heatmaps represents a sample corresponding to the one of the blood cell types, and each column represents an individual miRNA-arm. All miRNAs were statistically differentially expressed (FDR ≤ 0.001 and |log2FC| > 1). The Z-score in the heatmaps represents standardized normalized expression values. The unsupervised (agglomerative) hierarchical clustering of miRNAs was performed using Spearman's correlation distance (1 – correlation coefficient) as metric and average linkage clustering as linkage criterion.

References

    1. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281–297.
    1. Kozomara A., Griffiths-Jones S.. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014; 42:D68–D73.
    1. Lewis B.P., Burge C.B., Bartel D.P.. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120:15–20.
    1. Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P.. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92–105.
    1. Iorio M. V., Ferracin M., Liu C.-G., Veronese A., Spizzo R., Sabbioni S., Magri E., Pedriali M., Fabbri M., Campiglio M. et al. . MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65:7065–7070.
    1. Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A. et al. . MicroRNA expression profiles classify human cancers. Nature. 2005; 435:834–838.
    1. Calin G.A., Croce C.M.. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006; 6:857–866.
    1. Ma L., Teruya-Feldstein J., Weinberg R.A.. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449:682–688.
    1. Ikeda S., Kong S.W., Lu J., Bisping E., Zhang H., Allen P.D., Golub T.R., Pieske B., Pu W.T.. Altered microRNA expression in human heart disease. Physiol. Genomics. 2007; 31:367–373.
    1. Lee L.W., Zhang S., Etheridge A., Ma L., Martin D., Galas D., Wang K.. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA. 2010; 16:2170–2180.
    1. Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I.. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017; 45:2973–2985.
    1. Neilsen C.T., Goodall G.J., Bracken C.P.. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012; 28:544–549.
    1. Loher P., Londin E.R., Rigoutsos I.. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget. 2014; 5:8790–8802.
    1. Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I.. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017; 6:20707.
    1. Telonis A.G., Loher P., Jing Y., Londin E., Rigoutsos I.. Beyond the one-locus-one-miRNA paradigm: microRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015; 43:9158–9175.
    1. Warnefors M., Liechti A., Halbert J., Valloton D., Kaessmann H.. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol. 2014; 15:R83.
    1. Llorens F., Bañez-Coronel M., Pantano L., del Río J.A., Ferrer I., Estivill X., Martí E.. A highly expressed miR-101 isomiR is a functional silencing small RNA. BMC Genomics. 2013; 14:104.
    1. Tan G.C., Chan E., Molnar A., Sarkar R., Alexieva D., Isa I.M., Robinson S., Zhang S., Ellis P., Langford C.F. et al. . 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014; 42:9424–9435.
    1. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A. et al. . Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. 2008; 105:10513–10518.
    1. Lawrie C.H., Gal S., Dunlop H.M., Pushkaran B., Liggins A.P., Pulford K., Banham A.H., Pezzella F., Boultwood J., Wainscoat J.S. et al. . Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 2008; 141:672–675.
    1. Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., Guo J., Zhang Y., Chen J., Guo X. et al. . Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18:997–1006.
    1. Brase J.C., Wuttig D., Kuner R., Sültmann H.. Serum microRNAs as non-invasive biomarkers for cancer. Mol. Cancer. 2010; 9:306.
    1. McManus D.D., Ambros V.. Circulating microRNAs in cardiovascular disease. Circulation. 2011; 124:1908–1910.
    1. Sita-Lumsden A., Dart D.A., Waxman J., Bevan C.L.. Circulating microRNAs as potential new biomarkers for prostate cancer. Br. J. Cancer. 2013; 108:1925–1930.
    1. Pritchard C.C., Kroh E., Wood B., Arroyo J.D., Dougherty K.J., Miyaji M.M., Tait J.F., Tewari M.. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res. 2012; 5:492–497.
    1. Allantaz F., Cheng D.T., Bergauer T., Ravindran P., Rossier M.F., Ebeling M., Badi L., Reis B., Bitter H., D’Asaro M. et al. . Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One. 2012; 7:e29979.
    1. Doss J.F., Corcoran D.L., Jima D.D., Telen M.J., Dave S.S., Chi J.-T.. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics. 2015; 16:952.
    1. Leidinger P., Backes C., Meder B., Meese E., Keller A.. The human miRNA repertoire of different blood compounds. BMC Genomics. 2014; 15:474.
    1. Mitchell C.J., Getnet D., Kim M.-S., Manda S.S., Kumar P., Huang T.-C., Pinto S.M., Nirujogi R.S., Iwasaki M., Shaw P.G. et al. . A multi-omic analysis of human naïve CD4+ T cells. BMC Syst. Biol. 2015; 9:75.
    1. Koppers-Lalic D., Hackenberg M., Bijnsdorp I. V., van Eijndhoven M.A.J., Sadek P., Sie D., Zini N., Middeldorp J.M., Ylstra B., de Menezes R.X. et al. . Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014; 8:1649–1658.
    1. Gutiérrez-Vázquez C., Enright A.J., Rodríguez-Galán A., Pérez-García A., Collier P., Jones M.R., Benes V., Mizgerd J.P., Mittelbrunn M., Ramiro A.R. et al. . 3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA. 2017; 23:882–891.
    1. Nair V.S., Pritchard C.C., Tewari M., Ioannidis J.P.A.. Design and analysis for studying microRNAs in human disease: a primer on -Omic technologies. Am. J. Epidemiol. 2014; 180:140–152.
    1. Pritchard C.C., Cheng H.H., Tewari M.. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012; 13:358–369.
    1. Keller A., Meese E.. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in clinical settings?. Wiley Interdiscip. Rev. RNA. 2016; 7:148–156.
    1. Hafner M., Renwick N., Farazi T.A., Mihailović A., Pena J.T.G., Tuschl T.. Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods. 2012; 58:164–170.
    1. Edgar R., Domrachev M., Lash A.E.. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30:207–210.
    1. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17:10.
    1. Pantano L., Estivill X., Marti E.. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010; 38:e34.
    1. Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550.
    1. Benjamini Y., Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995; 57:289–300.
    1. R Core Team R: A Language and Environment for Statistical Computing. 2017.
    1. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2009; NY: Springer-Verlag.
    1. Gu Z., Eils R., Schlesner M.. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016; 32:2847–2849.
    1. Kang W., Friedländer M.R.. Computational prediction of miRNA genes from small RNA sequencing data. Front. Bioeng. Biotechnol. 2015; 3:7.
    1. O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D. et al. . Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016; 44:D733–D745.
    1. Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S.R.. Rfam: an RNA family database. Nucleic Acids Res. 2003; 31:439–441.
    1. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L.. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421.
    1. Langmead B., Trapnell C., Pop M., Salzberg S.L.. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25.
    1. Friedlander M.R., Mackowiak S.D., Li N., Chen W., Rajewsky N.. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40:37–52.
    1. Cunningham F., Amode M.R., Barrell D., Beal K., Billis K., Brent S., Carvalho-Silva D., Clapham P., Coates G., Fitzgerald S. et al. . Ensembl 2015. Nucleic Acids Res. 2014; 43:D662–D669.
    1. Wheeler T.J., Clements J., Eddy S.R., Hubley R., Jones T.A., Jurka J., Smit A.F.A., Finn R.D.. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013; 41:D70–D82.
    1. Backes C., Meder B., Hart M., Ludwig N., Leidinger P., Vogel B., Galata V., Roth P., Menegatti J., Grässer F. et al. . Prioritizing and selecting likely novel miRNAs from NGS data. Nucleic Acids Res. 2016; 44:e53.
    1. Chang W., Cheng J., Allaire J., Xie Y., McPherson J.. shiny: Web Application Framework for R. 2017.
    1. Wickham H., Romain F.. dplyr: A Grammar of Data Manipulation. 2016.
    1. Metpally R.P.R., Nasser S., Malenica I., Courtright A., Carlson E., Ghaffari L., Villa S., Tembe W., Van Keuren-Jensen K.. Comparison of analysis tools for miRNA high throughput sequencing using nerve crush as a model. Front. Genet. 2013; 4:20.
    1. Fehlmann T., Backes C., Kahraman M., Haas J., Ludwig N., Posch A.E., Würstle M.L., Hübenthal M., Franke A., Meder B. et al. . Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human miRNAs. Nucleic Acids Res. 2017; 13:1084–1088.
    1. Chen L., Kostadima M., Martens J.H.A., Canu G., Garcia S.P., Turro E., Downes K., Macaulay I.C., Bielczyk-Maczynska E., Coe S. et al. . Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014; 345:1251033.
    1. Petriv O.I., Kuchenbauer F., Delaney A.D., Lecault V., White A., Kent D., Marmolejo L., Heuser M., Berg T., Copley M. et al. . Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:15443–15448.
    1. Karali M., Persico M., Mutarelli M., Carissimo A., Pizzo M., Singh Marwah V., Ambrosio C., Pinelli M., Carrella D., Ferrari S. et al. . High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. 2016; 44:1525–1540.
    1. Burroughs A.M., Ando Y., de Hoon M.J.L., Tomaru Y., Nishibu T., Ukekawa R., Funakoshi T., Kurokawa T., Suzuki H., Hayashizaki Y. et al. . A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010; 20:1398–1410.
    1. Gyvyte U., Juzenas S., Salteniene V., Kupcinskas J., Poskiene L., Kucinskas L., Jarmalaite S., Stuopelyte K., Steponaitiene R., Hemmrich-Stanisak G. et al. . MiRNA profiling of gastrointestinal stromal tumors by next generation sequencing. Oncotarget. 2017; 5:37225–37238.
    1. Kim D., Sung Y.M., Park J., Kim S., Kim J., Park J., Ha H., Bae J.Y., Kim S., Baek D.. General rules for functional microRNA targeting. Nat. Genet. 2016; 48:1517–1526.
    1. Khorshid M., Hausser J., Zavolan M., van Nimwegen E.. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods. 2013; 10:253–255.
    1. Ni F., Guo C., Sun R., Fu B., Yang Y., Wu L., Ren S., Tian Z., Wei H.. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function. Sci. Rep. 2015; 5:9993.
    1. Jima D.D., Zhang J., Jacobs C., Richards K.L., Dunphy C.H., Choi W.W.L., Au W.Y., Srivastava G., Czader M.B., Rizzieri D.A. et al. . Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood. 2010; 116:e118–e127.
    1. Mestdagh P., Hartmann N., Baeriswyl L., Andreasen D., Bernard N., Chen C., Cheo D., D’Andrade P., DeMayo M., Dennis L. et al. . Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods. 2014; 11:809–815.
    1. Schwarz E.C., Backes C., Knörck A., Ludwig N., Leidinger P., Hoxha C., Schwär G., Grossmann T., Müller S.C., Hart M. et al. . Deep characterization of blood cell miRNomes by NGS. Cell. Mol. Life Sci. 2016; 73:3169–3181.
    1. Ebert P., Bock C.. Improving reference epigenome catalogs by computational prediction. Nat. Biotechnol. 2015; 33:354–355.
    1. Häggström M. Simplified hematopoiesis. Wikimedia Commons.

Source: PubMed

3
Abonner