Quantitative ultrasound: measurement considerations for the assessment of muscular dystrophy and sarcopenia

Michael O Harris-Love, Reza Monfaredi, Catheeja Ismail, Marc R Blackman, Kevin Cleary, Michael O Harris-Love, Reza Monfaredi, Catheeja Ismail, Marc R Blackman, Kevin Cleary

No abstract available

Keywords: assessment; muscular dystrophy; sarcopenia; screening; skeletal muscle; ultrasound.

Figures

Figure 1
Figure 1
Changes in serial sonographic image characteristics based on examiner force and sound transducer orientation. (A–C) Depict transverse views of a muscle tissue mimetic phantom with a progressive magnitude of stress imposed on the phantom surface by the sound transducer. The material deformation (thickness, centimeter) secondary to the stress progression was as follows: (A) 3.78 cm, (B) 3.45 cm, and (C) 3.21 cm. (D–F) Depict similar sonographic views as the preceding panels. The echointensity observed in the serial images is based on a progressively increasing cranial/caudal tilt angle of the sound transducer applied to the phantom surface. The changes in echointensity (grayscale, unitless, 0–255) secondary to the angle progression were as follows: (D) 56.64, (E) 48.10, and (F) 36.90. (All images were acquired using a 6 MHz linear array sound transducer and a muscle mimetic phantom with anechoic gel via automated image capture by the Kuka LWA robot.)

References

    1. Abe T., Kondo M., Kawakami Y., Fukunaga T. (1994). Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am. J. Hum. Biol. 6, 161–17010.1002/ajhb.1310060204
    1. Bemben M. G. (2002). Use of diagnostic ultrasound for assessing muscle size. J. Strength Cond. Res. 16, 103–10810.1519/00124278-200202000-00016
    1. Cheng J.-W., Tsai W.-C., Yu T.-Y., Huang K.-Y. (2012). Reproducibility of sonographic measurement of thickness and echogenicity of the plantar fascia. J. Clin. Ultrasound 40, 14–1910.1002/jcu.20903
    1. Correa-de-Araujo R., Hadley E. (2014). Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J. Gerontol. A Biol. Sci. Med. Sci. 69, 591–59410.1093/gerona/glt208
    1. Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., Boirie Y., Cederholm T., Landi F., et al. (2010). Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39, 412–42310.1093/ageing/afq034
    1. Dupont A. C., Sauerbrei E. E., Fenton P. V., Shragge P. C., Loeb G. E., Richmond F. J. (2001). Real-time sonography to estimate muscle thickness: comparison with MRI and CT. J. Clin. Ultrasound 29, 230–23610.1002/jcu.1025
    1. Edström E., Altun M., Bergman E., Johnson H., Kullberg S., Ramírez-León V., et al. (2007). Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol. Behav. 92, 129–13510.1016/j.physbeh.2007.05.040
    1. Fearon K., Evans W. J., Anker S. D. (2011). Myopenia – a new universal term for muscle wasting. J. Cachexia Sarcopenia Muscle 2, 1–310.1007/s13539-011-0025-7
    1. Goodpaster B. H., Carlson C. L., Visser M., Kelley D. E., Scherzinger A., Harris T. B., et al. (2001). Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J. Appl. Physiol. 90, 2157–2165
    1. Herbert R. D., Gandevia S. C. (1995). Changes in pennation with joint angle and muscle torque: in-vivo measurements in human brachialis muscle. J. Physiol. 484, 523–532
    1. Hides J. A., Miokovic T., Belavý D. L., Stanton W. R., Richardson C. A. (2007). Ultrasound imaging assessment of abdominal muscle function during drawing-in of the abdominal wall: an intrarater reliability study. J. Orthop. Sports Phys. Ther. 37, 480–48610.2519/jospt.2007.2416
    1. Ishida H., Watanabe S. (2012). Influence of inward pressure of the transducer on lateral abdominal muscle thickness during ultrasound imaging. J. Orthop. Sports Phys. Ther. 42, 815–81810.2519/jospt.2012.4064
    1. Ismail C., Hernandez H. J., Adams B., Zabal J., Manning H., Harris-Love M. O. (2014). Sonographic estimates of muscle quality: reliability of 3 different methods of grayscale analysis. J. Frailty Aging 3, 75–76
    1. Jansen M., van Alfen N., Nijhuis van der Sanden M. W. G., van Dijk J. P., Pillen S., de Groot I. J. M. (2012). Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul. Disord. 22, 306–31710.1016/j.nmd.2011.10.020
    1. Janssen B. H., Pillen S., Voet N. B. M., Heerschap A., van Engelen B. G. M., van Alfen N. (2014). Quantitative muscle ultrasound versus quantitative MRI in facioscapulohumeral dystrophy. Muscle Nerve.10.1002/mus.24247
    1. Leung D. G., Wagner K. R. (2013). Therapeutic advances in muscular dystrophy. Ann. Neurol. 74, 404–41110.1002/ana.23989
    1. Malatesta M. (2012). Skeletal muscle features in myotonic dystrophy and sarcopenia: do similar nuclear mechanisms lead to skeletal muscle wasting? Eur. J. Histochem. 56, e36.10.4081/ejh.2012.e36
    1. Miljkovic-Gacic I., Gordon C. L., Goodpaster B. H., Bunker C. H., Patrick A. L., Kuller L. H., et al. (2008). Adipose tissue infiltration in skeletal muscle: age patterns and association with diabetes among men of African ancestry. Am. J. Clin. Nutr. 87, 1590–1595
    1. Morley J. E., Abbatecola A. M., Argiles J. M., Baracos V., Bauer J., Bhasin S., et al. (2011). Sarcopenia with limited mobility: an international consensus. J. Am. Med. Dir. Assoc. 12, 403–40910.1016/j.jamda.2011.04.014
    1. Newman A. B., Kupelian V., Visser M., Simonsick E., Goodpaster B., Nevitt M., et al. (2003). Sarcopenia: alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 51, 1602–160910.1046/j.1532-5415.2003.51534.x
    1. O’Sullivan C., Bentman S., Bennett K., Stokes M. (2007). Rehabilitative ultrasound imaging of the lower trapezius muscle: technical description and reliability. J. Orthop. Sports Phys. Ther. 37, 620–62610.2519/jospt.2007.2446
    1. Pillen S., Scholten R. R., Zwarts M. J., Verrips A. (2003). Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve 27, 699–70510.1002/mus.10385
    1. Pillen S., van Alfen N. (2011). Skeletal muscle ultrasound. Neurol. Res. 33, 1016–102410.1179/1743132811Y.0000000010
    1. Pillen S., Verrips A., van Alfen N., Arts I. M. P., Sie L. T. L., Zwarts M. J. (2007). Quantitative skeletal muscle ultrasound: diagnostic value in childhood neuromuscular disease. Neuromuscul. Disord. 17, 509–51610.1016/j.nmd.2007.03.008
    1. Pineau J.-C., Filliard J. R., Bocquet M. (2009). Ultrasound techniques applied to body fat measurement in male and female athletes. J. Athl. Train. 44, 142–14710.4085/1062-6050-44.2.142
    1. Pineau J.-C., Guihard-Costa A.-M., Bocquet M. (2007). Validation of ultrasound techniques applied to body fat measurement. A comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry. Ann. Nutr. Metab. 51, 421–42710.1159/000111161
    1. Reimers C. D., Schlotter B., Eicke B. M., Witt T. N. (1996). Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature. J. Neurol. Sci. 143, 46–5610.1016/S0022-510X(96)00037-8
    1. Sanada K., Kearns C. F., Midorikawa T., Abe T. (2006). Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur. J. Appl. Physiol. 96, 24–3110.1007/s00421-005-0061-0
    1. Scheel A. K., Toepfer M., Kunkel M., Finkenstaedt M., Reimers C. D. (1997). Ultrasonographic assessment of the prevalence of fasciculations in lesions of the peripheral nervous system. J. Neuroimaging 7, 23–27
    1. Scholten R. R., Pillen S., Verrips A., Zwarts M. J. (2003). Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve 27, 693–69810.1002/mus.10384
    1. Studenski S. A., Peters K. W., Alley D. E., Cawthon P. M., McLean R. R., Harris T. B., et al. (2014). The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 69, 547–55810.1093/gerona/glu010
    1. Temes W. C., Temes Clifton A., Hilton V., Girard L., Strait N., Karduna A. (2014). Reliability and validity of thickness measurements of the supraspinatus muscle of the shoulder: an ultrasonography study. J. Sport Rehabil. 10.1123/jsr.2013-0023
    1. Tieleman A. A., Vinke A., van Alfen N., van Dijk J. P., Pillen S., van Engelen B. G. M. (2012). Skeletal muscle involvement in myotonic dystrophy type 2. A comparative muscle ultrasound study. Neuromuscul. Disord. 22, 492–49910.1016/j.nmd.2012.01.006
    1. von Haehling S., Morley J. E., Anker S. D. (2012). From muscle wasting to sarcopenia and myopenia: update 2012. J. Cachexia Sarcopenia Muscle 3, 213–21710.1007/s13539-012-0089-z
    1. Wagner D. R. (2013). Ultrasound as a tool to assess body fat. J. Obes. 2013, 280713.10.1155/2013/280713
    1. Walker F. O., Donofrio P. D., Harpold G. J., Ferrell W. G. (1990). Sonographic imaging of muscle contraction and fasciculations: a correlation with electromyography. Muscle Nerve 13, 33–3910.1002/mus.880130108
    1. Whittaker J. L., Warner M. B., Stokes M. J. (2009). Induced transducer orientation during ultrasound imaging: effects on abdominal muscle thickness and bladder position. Ultrasound Med. Biol. 35, 1803–181110.1016/j.ultrasmedbio.2009.05.018
    1. Zaidman C. M., Connolly A. M., Malkus E. C., Florence J. M., Pestronk A. (2010). Quantitative ultrasound using backscatter analysis in Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 20, 805–80910.1016/j.nmd.2010.06.019

Source: PubMed

3
Abonner