Indocyanine Green-Assisted and LED-Light-Activated Antibacterial Photodynamic Therapy Reduces Dental Plaque

Sakari Nikinmaa, Niina Moilanen, Timo Sorsa, Juha Rantala, Heikki Alapulli, Anja Kotiranta, Petri Auvinen, Esko Kankuri, Jukka H Meurman, Tommi Pätilä, Sakari Nikinmaa, Niina Moilanen, Timo Sorsa, Juha Rantala, Heikki Alapulli, Anja Kotiranta, Petri Auvinen, Esko Kankuri, Jukka H Meurman, Tommi Pätilä

Abstract

Aim: This study aimed to determine the feasibility and first efficacy of indocyanine green (ICG)-assisted antimicrobial photodynamictherapy (aPDT) as activated using LED light to the dental plaque.

Methods: Fifteen healthy adults were assigned to this four-day randomized study. After rinsing with ICG, 100 J/cm2 of 810 nm LED light was applied to the aPDT-treatment area. Plaque area and gingival crevicular fluid (GCF) matrix metalloproteinase-8 (MMP-8) were measured, and plaque bacteriomes before and after the study were analyzed using 16S rRNA sequencing.

Results: aPDT administration was preformed successfully and plaque-specifically with the combination of ICG and the applicator. Total plaque area and endpoint MMP-8 levels were reduced on the aPDT-treatment side. aPDT reduced Streptococcus, Acinetobacteria, Capnocytophaga, and Rothia bacteria species in plaques.

Conclusion: ICG-assisted aPDT reduces plaque forming bacteria and exerts anti-inflammatory and anti-proteolytic effects.

Keywords: antibacterial photodynamic therapy; dental plaque; gingivitis.

Conflict of interest statement

Tommi Pätilä is a stock owner and founder of Koite Health Oy, a company specialized in providing photodynamic therapy. He is a co-inventor of US20210030874A1, WO2021023915A1, WO2020193870A1, and WO2019234308A1. Sakari Nikinmaa is a stock owner and founder of Koite Health Oy, a company specialized in providing photodynamic therapy. He is a co-inventor of patents WO2020084199A1, US20210030874A1, WO2021023915A1, WO2020193870A1, and WO2019234308A1. Juha Rantala is a stock owner and founder of Koite Health Oy, a company specialized in providing photodynamic therapy. He is a co-inventor of patents WO2020084199A1, US20210030874A1, WO2021023915A1, WO2020193870A1, and WO2019234308A1. Timo Sorsa is an inventor of U.S. Patents 5652223, 5736341, 5866432, and 6143476 and co-inventor of U.S. Patent 20170023571A1.

Figures

Figure 1
Figure 1
(A) LED light applicator; and (B) study workflow. 16S, bacteriome 16S rRNA sequencing; CGF cervical gingival fluid; aPDT, antimicrobial photodynamic therapy. (C,D) Selective indocyanine green (ICG) localization to the dental plaque. Daylight (C,D) near-infrared light images after ICG mouth rinse. Representative images at Day 2, when the teeth had been without cleaning for a single day. * premolar one and ** premolar two.
Figure 2
Figure 2
Dental plaque formation: (A) plaque areas (62.7% of total premolar dental area) on the control side in the last imaging session (premolar one (*) and premolar two (**)); (B) plaque areas (33.8% of total premolar dental area) on the treatment side at the same time point; and (C) plaque areas at the end of study after four days of aPDT application. Paired measurements demonstrated significantly less plaque formation on the treated side compared to control side.
Figure 3
Figure 3
(A) Matrix metalloproteinase-8 (MMP-8) concentrations at indicated days and sides in samples from gingival pockets. aPDT effect on MMP-8 secretion significantly lower on the aPDT-treated side than on the control side after the last application of aPDT at end-of-study; and (B) analysis of bacteriome using 16S rRNA sequencing. This figure shows the diversity of bacteria within the plaque samples from the treatment and control premolars at the start of the treatment at baseline and at the end of the study period. At the end of treatment, a significant reduction in the relative proportion of Streptococcus, Actinomyces, and Rothia bacteria species was identified, and a relative increase in the Neisseria, Haemophilus, and Leptotrichia bacteria species was seen between treated and control side. * p < 0.05, ** p < 0.01, *** p < 0.001.

References

    1. Peres M.A., Macpherson L.M.D., Weyant R.J., Daly B., Venturelli R., Mathur M.R., Listl S., Celeste R.K., Guarnizo-Herreño C.C., Kearns C., et al. Oral diseases: A global public health challenge. Lancet. 2019;394:249–260. doi: 10.1016/S0140-6736(19)31146-8.
    1. James S.L., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analy-sis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
    1. Dörfer C., Benz C., Aida J., Campard G. The relationship of oral health with general health and NCDs: A brief review. Int. Dent. J. 2017;67:14–18. doi: 10.1111/idj.12360.
    1. Kuboniwa M., Lamont R.J. Subgingival biofilm formation. Periodontology. 2009;52:38–52. doi: 10.1111/j.1600-0757.2009.00311.x.
    1. Pihlstrom B.L., Michalowicz B.S., Johnson N.W. Periodontal diseases. Lancet. 2005;366:1809–1820. doi: 10.1016/S0140-6736(05)67728-8.
    1. Konopka K., Goslinski T. Photodynamic Therapy in Dentistry. J. Dent. Res. 2007;86:694–707. doi: 10.1177/154405910708600803.
    1. Nikinmaa S., Alapulli H., Auvinen P., Vaara M., Rantala J., Kankuri E., Sorsa T., Meurman J., Pätilä T. Dual-light photodynamic therapy administered daily provides a sustained antibacterial effect on biofilm and prevents Streptococcus mutans adaptation. PLoS ONE. 2020;15:e0232775. doi: 10.1371/journal.pone.0232775.
    1. Chambrone L., Wang H.L., Romanos G.E. Antimicrobial photodynamic therapy for the treatment of periodontitis and pe-ri-implantitis: An American Academy of Periodontology best evidence review. J. Periodontol. 2018;89:783–803.
    1. Tavares A., Carvalho C.M.B., Faustino M.A., Neves M.G.P.M.S., Tomé J.P.C., Tomé A.C., Cavaleiro J.A.S., Cunha Â., Gomes N.C.M., Alves E., et al. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Mar. Drugs. 2010;8:91–105. doi: 10.3390/md8010091.
    1. Alander J.T., Kaartinen I., Laakso A., Pätilä T., Spillmann T., Tuchin V.V., Venermo M., Välisuo P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging. 2012;2012:1–26. doi: 10.1155/2012/940585.
    1. Bal F.A., Ozkocak I., Cadirci B.H., Karaarslan E.S., Cakdinleyen M., Agaccioglu M. Effects of photodynamic therapy with indocyanine green on Streptococcus mutans biofilm. Photodiagn. Photodyn. Ther. 2019;26:229–234. doi: 10.1016/j.pdpdt.2019.04.005.
    1. Eroglu C.N., Tunc S.K., Erten R., Usumez A. Clinical and histological evaluation of the efficacy of antimicrobial photodynamic therapy used in addition to antibiotic therapy in pericoronitis treatment. Photodiagn. Photodyn. Ther. 2018;21:416–420. doi: 10.1016/j.pdpdt.2018.02.018.
    1. Hill G., Dehn C., Hinze A.V., Frentzen M., Meister J. Indocyanine green-based adjunctive antimicrobial photodynamic therapy for treating chronic periodontitis: A randomized clinical trial. Photodiagn. Photodyn. Ther. 2019;26:29–35. doi: 10.1016/j.pdpdt.2019.02.019.
    1. Monzavi A., Chinipardaz Z., Mousavi M., Fekrazad R., Moslemi N., Azaripour A., Bagherpasand O., Chiniforush N. Antimicrobial photodynamic therapy using diode laser activated indocyanine green as an adjunct in the treatment of chronic periodontitis: A randomized clinical trial. Photodiagn. Photodyn. Ther. 2016;14:93–97. doi: 10.1016/j.pdpdt.2016.02.007.
    1. Shingnapurkar S.H., Mitra D.K., Kadav M.S., Shah R.A., Rodrigues S.V., Prithyani S.S. The effect of indocyanine green-mediated photodynamic therapy as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A comparative split-mouth randomized clinical trial. Indian J. Dent. Res. 2016;27:609–617. doi: 10.4103/0970-9290.199598.
    1. Srikanth K., Chandra R.V., Reddy A.A., Reddy B.H., Reddy C., Naveen A. Effect of a single session of antimicrobial photodynamic therapy using indocyanine green in the treatment of chronic periodontitis: A randomized controlled pilot trial. Quintessence Int. 2015;46:391–400.
    1. Hanemaaijer R., Sorsa T., Konttinen Y.T., Ding Y., Sutinen M., Visser H., van Hinsbergh V.W.M., Helaakoski T., Kainulainen T., Rönkä H., et al. Matrix Metalloproteinase-8 Is Expressed in Rheumatoid Synovial Fibroblasts and Endothelial Cells. J. Biol. Chem. 1997;272:31504–31509. doi: 10.1074/jbc.272.50.31504.
    1. Mäntylä P., Stenman M., Kinane D.F., Tikanoja S., Luoto H., Salo T., Sorsa T. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J. Periodontal. Res. 2003;38:436–439. doi: 10.1034/j.1600-0765.2003.00677.x.
    1. Sorsa T., Gursoy U.K., Nwhator S., Hernandez M., Tervahartiala T., Leppilahti J., Gursoy M., Könönen E., Emingil G., Pussinen P.J., et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival crevicular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontol. 2000. 2015;70:142–163. doi: 10.1111/prd.12101.
    1. Sorsa T., Hernã¡ndez M., Leppilahti J., Munjal S., Netuschil L., Mäntylä P. Detection of gingival crevicular fluid MMP-8 levels with different laboratory and chair-side methods. Oral Dis. 2009;16:39–45. doi: 10.1111/j.1601-0825.2009.01603.x.
    1. Pereira P.A., Aho V.T., Paulin L., Pekkonen E., Auvinen P., Scheperjans F. Oral and nasal microbiota in Parkinson’s disease. Park. Relat. Disord. 2017;38:61–67. doi: 10.1016/j.parkreldis.2017.02.026.
    1. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09.
    1. Marsh P. Dental Plaque as a Microbial Biofilm. Caries Res. 2004;38:204–211. doi: 10.1159/000077756.
    1. Hamblin M.R., Hasan T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 2004;3:436–450. doi: 10.1039/b311900a.
    1. Takeshita T., Yasui M., Shibata Y., Furuta M., Saeki Y., Eshima N., Yamashita Y. Dental plaque development on a hydroxyapatite disk in young adults observed by using a barcoded pyrosequencing approach. Sci. Rep. 2015;5:srep08136. doi: 10.1038/srep08136.
    1. Odanaka H., Obama T., Sawada N., Sugano M., Itabe H., Yamamoto M. Comparison of protein profiles of the pellicle, gingival crevicular fluid, and saliva: Possible origin of pellicle proteins. Biol. Res. 2020;53:3–10. doi: 10.1186/s40659-020-0271-2.
    1. Ichinose-Tsuno A., Aoki A., Takeuchi Y., Kirikae T., Shimbo T., Lee M.-C.-I., Yoshino F., Maruoka Y., Itoh T., Ishikawa I., et al. Antimicrobial photodynamic therapy suppresses dental plaque formation in healthy adults: A randomized controlled clinical trial. BMC Oral Health. 2014;14:1–10. doi: 10.1186/1472-6831-14-152.
    1. Stolik S., Delgado J., Pérez A., Anasagasti L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B Biol. 2000;57:90–93. doi: 10.1016/S1011-1344(00)00082-8.
    1. De Freitas L.F., Hamblin M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016;22:348–364. doi: 10.1109/JSTQE.2016.2561201.
    1. Yu Z., Liu N., Zhao J., Li Y., McCarthy T.J., Tedford C.E., Lo E.H., Wang X. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation. Metab. Brain Dis. 2014;30:491–496. doi: 10.1007/s11011-014-9515-6.
    1. Nguyen L.M.-D., Malamo A.G., Larkin-Kaiser K.A., Borsa P.A., Adhihetty P.J. Effect of near-infrared light exposure on mitochondrial signaling in C2C12 muscle cells. Mitochondrion. 2014;14:42–48. doi: 10.1016/j.mito.2013.11.001.
    1. Kim H.B., Baik K.Y., Seonwoo H., Jang K.-J., Lee M.C., Choung P.-H., Chung J.H. Effects of pulsing of light on the dentinogenesis of dental pulp stem cells in vitro. Sci. Rep. 2018;8:2057. doi: 10.1038/s41598-018-19395-x.
    1. Bicakci A.A., Kocoglu-Altan B., Toker H., Mutaf I., Sumer Z. Efficiency of Low-Level Laser Therapy in Reducing Pain Induced by Orthodontic Forces. Photomed. Laser Surg. 2012;30:460–465. doi: 10.1089/pho.2012.3245.
    1. Yassaei S., Fekrazad R., Shahraki N. Effect of Low Level Laser Therapy on Orthodontic Tooth Movement: A Review Article. J. Dent. 2013;10:264–272.
    1. Trindade F., Oppenheim F.G., Helmerhorst E.J., Amado F., Gomes P.S., Vitorino R. Uncovering the molecular networks in periodontitis. Proteom. Clin. Appl. 2014;8:748–761. doi: 10.1002/prca.201400028.
    1. Chen C., Hemme C., Beleno J., Shi Z.J., Ning D., Qin Y., Tu Q., Jorgensen M., He Z., Wu L., et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 2018;12:1210–1224. doi: 10.1038/s41396-017-0037-1.
    1. Takeshita T., Kageyama S., Furuta M., Tsuboi H., Takeuchi K., Shibata Y., Shimazaki Y., Akifusa S., Ninomiya T., Kiyohara Y., et al. Bacterial diversity in saliva and oral health-related conditions: The Hisayama Study. Sci. Rep. 2016;6:22164. doi: 10.1038/srep22164.
    1. Tsai C.-Y., Tang C.Y., Tan T.-S., Chen K.-H., Liao K.-H., Liou M.-L. Subgingival microbiota in individuals with severe chronic periodontitis. J. Microbiol. Immunol. Infect. 2018;51:226–234. doi: 10.1016/j.jmii.2016.04.007.
    1. Liljemark W.F., Bloomquist C.G., Uhl L.A., Schaffer E.M., Wolff L.F., Pihlstrom B.L., Bandt C.L. Distribution of oral Haemophilus species in dental plaque from a large adult population. Infect. Immun. 1984;46:778–786. doi: 10.1128/IAI.46.3.778-786.1984.
    1. Epstein F.H., Weiss S.J. Tissue Destruction by Neutrophils. N. Engl. J. Med. 1989;320:365–376. doi: 10.1056/NEJM198902093200606.
    1. Saari H., Suomalainen K., Lindy O., Konttinen Y., Sorsa T. Activation of latent human neutrophil collagenase by reactive oxygen species and serine proteases. Biochem. Biophys. Res. Commun. 1990;171:979–987. doi: 10.1016/0006-291X(90)90780-Q.
    1. Marsh P.D. Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health. 2006;6:S14. doi: 10.1186/1472-6831-6-S1-S14.
    1. Marsh P. Microbial Ecology of Dental Plaque and its Significance in Health and Disease. Adv. Dent. Res. 1994;8:263–271. doi: 10.1177/08959374940080022001.
    1. Wand M.E., Bock L.J., Bonney L.C., Sutton J.M. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob. Agents Chemother. 2016;61:01162–01216. doi: 10.1128/AAC.01162-16.
    1. Pessoa L., Galvão V., Damante C., Sant’Ana A.C.P. Removal of black stains from teeth by photodynamic therapy: Clinical and microbiological analysis. BMJ Case Rep. 2015;2015:2015212276. doi: 10.1136/bcr-2015-212276.
    1. Fried D., Glena R.E., Featherstone J.D.B., Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl. Opt. 1995;34:1278–1285. doi: 10.1364/AO.34.001278.

Source: PubMed

3
Abonner