Development of a core outcome set for congenital pulmonary airway malformations: study protocol of an international Delphi survey

Sergei Hermelijn, Casper Kersten, Dhanya Mullassery, Nagarajan Muthialu, Nazan Cobanoglu, Silvia Gartner, Pietro Bagolan, Carmen Mesas Burgos, Alberto Sgro, Stijn Heyman, Holger Till, Janne Suominen, Maarten Schurink, Liesbeth Desender, Paul Losty, Kjetil Ertresvag, Harm A W M Tiddens, Rene M H Wijnen, Marco Schnater, CONNECT study consortium COS development group, CONNECT study consortium COS development group, S M Hermelijn, C M Kersten, J M Schnater, R M H Wijnen, H A W M Tiddens, S C M Cochius, J Suominen, M Pakarinen, L Martelius, S Heyman, D Vervloessem, H Steyaert, A Sgrò, P Gamba, M Schurink, S van der Heide, J Roukema, N Rikkers-Mutsaerts, S Terheggen-Lagro, S de Beer, E Haarman, H Till, G Singer, M Metzelder, P Sezen, L Desender, H Schaballie, N Cobanoglu, G Gollu, M Stanton, A Bonnard, R Sfeir, N Muthialu, D Mullassery, C Wallis, D Cox, P Bagolan, F Morini, C Mesas Burgos, P Conner, E Caffrey Osvald, C Bitkover, H Decaluwé, M Proesmans, M Boon, J Deprest, S Gartner, A Lain, P D Losty, I Sinha, I Yardley, M Singh, L Wessel, K Zahn, T Schaible, N Qvist, M Zampoli, G Aksnes, C K van der Ent, K M Winter-de Groot, R Peters, E Hannon, Q Jöbsis, M Bannier, Sergei Hermelijn, Casper Kersten, Dhanya Mullassery, Nagarajan Muthialu, Nazan Cobanoglu, Silvia Gartner, Pietro Bagolan, Carmen Mesas Burgos, Alberto Sgro, Stijn Heyman, Holger Till, Janne Suominen, Maarten Schurink, Liesbeth Desender, Paul Losty, Kjetil Ertresvag, Harm A W M Tiddens, Rene M H Wijnen, Marco Schnater, CONNECT study consortium COS development group, CONNECT study consortium COS development group, S M Hermelijn, C M Kersten, J M Schnater, R M H Wijnen, H A W M Tiddens, S C M Cochius, J Suominen, M Pakarinen, L Martelius, S Heyman, D Vervloessem, H Steyaert, A Sgrò, P Gamba, M Schurink, S van der Heide, J Roukema, N Rikkers-Mutsaerts, S Terheggen-Lagro, S de Beer, E Haarman, H Till, G Singer, M Metzelder, P Sezen, L Desender, H Schaballie, N Cobanoglu, G Gollu, M Stanton, A Bonnard, R Sfeir, N Muthialu, D Mullassery, C Wallis, D Cox, P Bagolan, F Morini, C Mesas Burgos, P Conner, E Caffrey Osvald, C Bitkover, H Decaluwé, M Proesmans, M Boon, J Deprest, S Gartner, A Lain, P D Losty, I Sinha, I Yardley, M Singh, L Wessel, K Zahn, T Schaible, N Qvist, M Zampoli, G Aksnes, C K van der Ent, K M Winter-de Groot, R Peters, E Hannon, Q Jöbsis, M Bannier

Abstract

Introduction: A worldwide lack of consensus exists on the optimal management of asymptomatic congenital pulmonary airway malformation (CPAM) even though the incidence is increasing. Either a surgical resection is performed or a wait-and-see policy is employed, depending on the treating physician. Management is largely based on expert opinion and scientific evidence is scarce. Wide variations in outcome measures are seen between studies making comparison difficult thus highlighting the lack of universal consensus in outcome measures as well. We aim to define a core outcome set which will include the most important core outcome parameters for paediatric patients with an asymptomatic CPAM.

Methods and analysis: This study will include a critical appraisal of the current literature followed by a three-stage Delphi process with two stakeholder groups. One surgical group including paediatric as well as thoracic surgeons, and a non-surgeon group including paediatric pulmonologists, intensive care and neonatal specialists. All participants will score outcome parameters according to their level of importance and the most important parameters will be determined by consensus.

Ethics and dissemination: Electronic informed consent will be obtained from all participants. Ethical approval is not required. After the core outcome set has been defined, we intend to design an international randomised controlled trial: the COllaborative Neonatal NEtwork for the first CPAM Trial, which will be aimed at determining the optimal management of patients with asymptomatic CPAM.

Keywords: neonatology; paediatric intensive & critical care; paediatric surgery; paediatric thoracic medicine; paediatric thoracic surgery.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.

References

    1. EUROCAT . Prevalence tables. 2007-2018. Available: [Accessed Jan 2019].
    1. Stocker LJ, Wellesley DG, Stanton MP, et al. . The increasing incidence of foetal echogenic congenital lung malformations: an observational study. Prenat Diagn 2015;35:148–53. 10.1002/pd.4507
    1. Stanton M, Njere I, Ade-Ajayi N, et al. . Systematic review and meta-analysis of the postnatal management of congenital cystic lung lesions. J Pediatr Surg 2009;44:1027–33. 10.1016/j.jpedsurg.2008.10.118
    1. Lo AY-S, Jones S. Lack of consensus among Canadian pediatric surgeons regarding the management of congenital cystic adenomatoid malformation of the lung. J Pediatr Surg 2008;43:797–9. 10.1016/j.jpedsurg.2007.12.016
    1. Morini F, Zani A, Conforti A, et al. . Current Management of Congenital Pulmonary Airway Malformations: A “European Pediatric Surgeons’ Association” Survey. Eur J Pediatr Surg 2018;28:001–5. 10.1055/s-0037-1604020
    1. Wong KKY, Flake AW, Tibboel D, et al. . Congenital pulmonary airway malformation: advances and controversies. Lancet Child Adolesc Health 2018;2:290–7. 10.1016/S2352-4642(18)30035-X
    1. Stanton M. The argument for a non-operative approach to asymptomatic lung lesions. Semin Pediatr Surg 2015;24:183–6. 10.1053/j.sempedsurg.2015.01.014
    1. Singh R, Davenport M. The argument for operative approach to asymptomatic lung lesions. Semin Pediatr Surg 2015;24:187–95. 10.1053/j.sempedsurg.2015.02.003
    1. Hermelijn SM, Wolf JL, Dorine den Toom T, et al. . Early KRAS oncogenic driver mutations in nonmucinous tissue of congenital pulmonary airway malformations as an indicator of potential malignant behavior. Hum Pathol 2020;103:95–106. 10.1016/j.humpath.2020.07.015
    1. Boers M, Kirwan JR, Gossec L, et al. . How to choose core outcome measurement sets for clinical trials: OMERACT 11 approves filter 2.0. J Rheumatol 2014;41:1025–30. 10.3899/jrheum.131314
    1. Williamson PR, Altman DG, Bagley H, et al. . The comet Handbook: version 1.0. Trials 2017;18:280. 10.1186/s13063-017-1978-4
    1. Kirkham JJ, Davis K, Altman DG, et al. . Core outcome Set-STAndards for development: the COS-STAD recommendations. PLoS Med 2017;14:e1002447. 10.1371/journal.pmed.1002447
    1. Bruce I, Harman N, Williamson P, et al. . The management of otitis media with effusion in children with cleft palate (mOMEnt): a feasibility study and economic evaluation. Health Technol Assess 2015;19:1–374. 10.3310/hta19680
    1. Sherratt FC, Eaton S, Walker E, et al. . Development of a core outcome set to determine the overall treatment success of acute uncomplicated appendicitis in children: a study protocol. BMJ Paediatr Open 2017;1:e000151. 10.1136/bmjpo-2017-000151
    1. Knaapen M, Hall NJ, van der Lee JH, et al. . Establishing a core outcome set for treatment of uncomplicated appendicitis in children: study protocol for an international Delphi survey. BMJ Open 2019;9:e028861. 10.1136/bmjopen-2018-028861
    1. Guyatt GH, Oxman AD, Kunz R, et al. . Grade guidelines: 2. framing the question and deciding on important outcomes. J Clin Epidemiol 2011;64:395–400. 10.1016/j.jclinepi.2010.09.012
    1. Welphi . Welphi online survey platform, 2020. Available:
    1. (GDPR) Gdpr . Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (General data protection regulation), OJ 2016 L 119/1, 2018.

Source: PubMed

3
Abonner