Changes in the Brain-Derived Neurotrophic Factor Are Associated with Improvements in Diabetes Risk Factors after Exercise Training in Adolescents with Obesity: The HEARTY Randomized Controlled Trial

Jeremy J Walsh, Amedeo D'Angiulli, Jameason D Cameron, Ronald J Sigal, Glen P Kenny, Martin Holcik, Steve Doucette, Angela S Alberga, Denis Prud'homme, Stasia Hadjiyannakis, Katie Gunnell, Gary S Goldfield, Jeremy J Walsh, Amedeo D'Angiulli, Jameason D Cameron, Ronald J Sigal, Glen P Kenny, Martin Holcik, Steve Doucette, Angela S Alberga, Denis Prud'homme, Stasia Hadjiyannakis, Katie Gunnell, Gary S Goldfield

Abstract

Obesity in youth increases the risk of type 2 diabetes (T2D), and both are risk factors for neurocognitive deficits. Exercise attenuates the risk of obesity and T2D while improving cognitive function. In adults, these benefits are associated with the actions of the brain-derived neurotrophic factor (BDNF), a protein critical in modulating neuroplasticity, glucose regulation, fat oxidation, and appetite regulation in adults. However, little research exists in youth. This study examined the associations between changes in diabetes risk factors and changes in BDNF levels after 6 months of exercise training in adolescents with obesity. The sample consisted of 202 postpubertal adolescents with obesity (70% females) aged 14-18 years who were randomized to 6 months of aerobic and/or resistance training or nonexercise control. All participants received a healthy eating plan designed to induce a 250/kcal deficit per day. Resting serum BDNF levels and diabetes risk factors, such as fasting glucose, insulin, homeostasis model assessment (HOMA-B-beta cell insulin secretory capacity) and (HOMA-IS-insulin sensitivity), and hemoglobin A1c (HbA1c), were measured after an overnight fast at baseline and 6 months. There were no significant intergroup differences on changes in BDNF or diabetes risk factors. In the exercise group, increases in BDNF were associated with reductions in fasting glucose (β = -6.57, SE = 3.37, p = 0.05) and increases in HOMA-B (β = 0.093, SE = 0.03, p = 0.004) after controlling for confounders. No associations were found between changes in diabetes risk factors and BDNF in controls. In conclusion, exercise-induced reductions in some diabetes risk factors were associated with increases in BDNF in adolescents with obesity, suggesting that exercise training may be an effective strategy to promote metabolic health and increases in BDNF, a protein favoring neuroplasticity. This trial is registered with ClinicalTrials.gov NCT00195858, September 12, 2005 (funded by the Canadian Institutes of Health Research).

References

    1. Roberts K. C., Shields M., de Groh M., Aziz A., Gilbert J.-A. Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Statistics Canada Health Reports. 2012;23(3)
    1. Ogden C. L., Carroll M. D., Kit B. K., Flegal K. M. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–814. doi: 10.1001/jama.2014.732.
    1. Liang J., Matheson B. E., Kaye W. H., Boutelle K. N. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. International Journal of Obesity. 2014;38(4):494–506. doi: 10.1038/ijo.2013.142.
    1. Emmerzaal T. L., Kiliaan A. J., Gustafson D. R. 2003-2013: a decade of body mass index, Alzheimer’s disease, and dementia. Journal of Alzheimer's Disease. 2014;43(3):739–755. doi: 10.3233/jad-141086.
    1. Bijland S., Mancini S. J., Salt I. P. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clinical Science. 2013;124(8):491–507. doi: 10.1042/CS20120536.
    1. Ludwig D. S., Ebbeling C. B. Type 2 diabetes mellitus in children: primary care and public health considerations. JAMA. 2001;286(12):1427–1430. doi: 10.1001/jama.286.12.1427.
    1. Biessels G. J., Kappelle L. J. Increased risk of Alzheimer’s disease in type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochemical Society Transactions. 2005;33(5):1041–1044. doi: 10.1042/BST0331041.
    1. Biessels G. J., Deary I. J., Ryan C. M. Cognition and diabetes: a lifespan perspective. Lancet Neurology. 2008;7(2):184–190. doi: 10.1016/S1474-4422(08)70021-8.
    1. pourabbasi A., Tehrani-Doost M., Qavam S. E., Arzaghi S. M., Larijani B. Association of diabetes mellitus and structural changes in the central nervous system in children and adolescents: a systematic review. Journal of Diabetes and Metabolic Disorders. 2017;16(1):p. 10. doi: 10.1186/s40200-017-0292-8.
    1. McCrimmon R. J., Ryan C. M., Frier B. M. Diabetes and cognitive dysfunction. Lancet. 2012;379(9833):2291–2299. doi: 10.1016/S0140-6736(12)60360-2.
    1. Marosi K., Mattson M. P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology and Metabolism. 2014;25(2):89–98. doi: 10.1016/j.tem.2013.10.006.
    1. Mattson M. P., Maudsley S., Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences. 2004;27(10):589–594. doi: 10.1016/j.tins.2004.08.001.
    1. Matthews V. B., Åström M. B., Chan M. H. S., et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):1409–1418. doi: 10.1007/s00125-009-1364-1.
    1. Jiménez-Maldonado A., de Álvarez-Buylla E. R., Montero S., et al. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One. 2014;9(12, article e115177) doi: 10.1371/journal.pone.0115177.
    1. Pan W., Banks W. A., Fasold M. B., Bluth J., Kastin A. J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553–1561. doi: 10.1016/S0028-3908(98)00141-5.
    1. Angelucci F., Gelfo F., de Bartolo P., Caltagirone C., Petrosini L. BDNF concentrations are decreased in serum and parietal cortex in immunotoxin 192 IgG-Saporin rat model of cholinergic degeneration. Neurochemistry International. 2011;59(1):1–4. doi: 10.1016/j.neuint.2011.04.010.
    1. Karege F., Schwald M., Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience Letters. 2002;328(3):261–264. doi: 10.1016/S0304-3940(02)00529-3.
    1. Brunoni A. R., Lopes M., Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. The International Journal of Neuropsychopharmacology. 2008;11(8):1169–1180. doi: 10.1017/S1461145708009309.
    1. Laske C., Stransky E., Leyhe T., et al. Decreased brain-derived neurotrophic factor (BDNF)- and β-thromboglobulin (β-TG)- blood levels in Alzheimer’s disease. Thrombosis and Haemostasis. 2006;96(1):102–103. doi: 10.1160/TH06-03-0173.
    1. Zhao J., Bradfield J. P., Li M., et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity. 2009;17(12):2254–2257. doi: 10.1038/oby.2009.159.
    1. Thorleifsson G., Walters G. B., Gudbjartsson D. F., et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics. 2009;41(1):18–24. doi: 10.1038/ng.274.
    1. Krabbe K. S., Nielsen A. R., Krogh-Madsen R., et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50(2):431–438. doi: 10.1007/s00125-006-0537-4.
    1. Briana D. D., Malamitsi-Puchner A. Developmental origins of adult health and disease: the metabolic role of BDNF from early life to adulthood. Metabolism. 2018;81:45–51. doi: 10.1016/j.metabol.2017.11.019.
    1. Kernie S. G., Liebl D. J., Parada L. F. BDNF regulates eating behavior and locomotor activity in mice. The EMBO Journal. 2000;19(6):1290–1300. doi: 10.1093/emboj/19.6.1290.
    1. Mainardi M., Scabia G., Vottari T., et al. A sensitive period for environmental regulation of eating behavior and leptin sensitivity. Proceedings of the National Academy of Sciences. 2010;107(38):16673–16678. doi: 10.1073/pnas.0911832107.
    1. Tsuchida A., Nakagawa T., Itakura Y., et al. The effects of brain-derived neurotrophic factor on insulin signal transduction in the liver of diabetic mice. Diabetologia. 2001;44(5):555–566. doi: 10.1007/s001250051661.
    1. Jiménez-Maldonado A., Virgen-Ortiz A., Melnikov V., et al. Effect of moderate and high intensity chronic exercise on the pancreatic islet morphometry in healthy rats: BDNF receptor participation. Islets. 2017;9(1):1–10. doi: 10.1080/19382014.2016.1260796.
    1. Yamanaka M., Tsuchida A., Nakagawa T., et al. Brain-derived neurotrophic factor enhances glucose utilization in peripheral tissues of diabetic mice. Diabetes, Obesity & Metabolism. 2007;9(1):59–64. doi: 10.1111/j.1463-1326.2006.00572.x.
    1. Cao L., Choi E. Y., Liu X., et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metabolism. 2011;14(3):324–338. doi: 10.1016/j.cmet.2011.06.020.
    1. Mainardi M., Pizzorusso T., Maffei M. Environment, leptin sensitivity, and hypothalamic plasticity. Neural Plasticity. 2013;2013:8. doi: 10.1155/2013/438072.438072
    1. Walsh J. J., Tschakovsky M. E. Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition, and Metabolism. 2018 doi: 10.1139/apnm-2018-0192.
    1. Epstein L. H., Goldfield G. S. Physical activity in the treatment of childhood overweight and obesity: current evidence and research issues. Medicine & Science in Sports & Exercise. 1999;31:p. S553. doi: 10.1097/00005768-199911001-00011.
    1. Kang H., Gutin B., Barbeau P., et al. Physical training improves insulin resistance syndrome markers in obese adolescents. Medicine & Science in Sports & Exercise. 2002;34(12):1920–1927. doi: 10.1097/00005768-200212000-00010.
    1. Dinoff A., Herrmann N., Swardfager W., et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One. 2016;11(9):e0163037–e0163021. doi: 10.1371/journal.pone.0163037.
    1. Dinoff A., Herrmann N., Swardfager W., Lanctôt K. L. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. The European Journal of Neuroscience. 2017;46(1):1635–1646. doi: 10.1111/ejn.13603.
    1. Szuhany K. L., Bugatti M., Otto M. W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003.
    1. Jeon Y. K., Ha C. H. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine. 2017;22(1):p. 27. doi: 10.1186/s12199-017-0643-6.
    1. Lee S. S., Yoo J. H., Kang S., et al. The effects of 12 weeks regular aerobic exercise on brain-derived neurotrophic factor and inflammatory factors in juvenile obesity and type 2 diabetes mellitus. Journal of Physical Therapy Science. 2014;26(8):1199–1204. doi: 10.1589/jpts.26.1199.
    1. Sigal R. J., Alberga A. S., Goldfield G. S., et al. Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents. JAMA Pediatrics. 2014;168(11):p. 1006. doi: 10.1001/jamapediatrics.2014.1392.
    1. Alberga A. S., Goldfield G. S., Kenny G. P., et al. Healthy eating, aerobic and resistance training in youth (HEARTY): study rationale, design and methods. Contemporary Clinical Trials. 2012;33(4):839–847. doi: 10.1016/j.cct.2012.04.004.
    1. Wallace T. M., Levy J. C., Matthews D. R. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–1495. doi: 10.2337/diacare.27.6.1487.
    1. Levy J. C., Matthews D. R., Hermans M. P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2192. doi: 10.2337/diacare.21.12.2191.
    1. Goldfield G. S., Kenny G. P., Prud'homme D., et al. Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: the HEARTY randomized controlled trial. Physiology & Behavior. 2018;191:138–145. doi: 10.1016/j.physbeh.2018.04.026.
    1. Ozek C., Zimmer D. J., de Jonghe B. C., Kalb R. G., Bence K. K. Ablation of intact hypothalamic and/or hindbrain TrkB signaling leads to perturbations in energy balance. Molecular Metabolism. 2015;4(11):867–880. doi: 10.1016/j.molmet.2015.08.002.
    1. Pedersen N. H., Tarp J., Andersen L. B., et al. The association between serum brain-derived neurotrophic factor and a cluster of cardiovascular risk factors in adolescents: the CHAMPS-study DK. PLoS One. 2017;12(10):e0186384–e0186312. doi: 10.1371/journal.pone.0186384.
    1. El-Gharbawy A. H., Adler-Wailes D. C., Mirch M. C., et al. Serum brain-derived neurotrophic factor concentrations in lean and overweight children and adolescents. The Journal of Clinical Endocrinology and Metabolism. 2006;91(9):3548–3552. doi: 10.1210/jc.2006-0658.
    1. Roth C. L., Elfers C., Gebhardt U., Müller H. L., Reinehr T. Brain-derived neurotrophic factor and its relation to leptin in obese children before and after weight loss. Metabolism. 2013;62(2):226–234. doi: 10.1016/j.metabol.2012.08.001.
    1. Song Y., Manson J. E., Tinker L., et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care. 2007;30(7):1747–1752. doi: 10.2337/dc07-0358.
    1. Araya A., Orellana X., Godoy D., Soto L., Fiedler J. Effect of exercise on circulating levels of brain-derived neurotrophic factor (BDNF) in overweight and obese subjects. Hormone and Metabolic Research. 2013;45(7):541–544. doi: 10.1055/s-0032-1333237.
    1. Swift D. L., Johannsen N. M., Myers V. H., et al. The effect of exercise training modality on serum brain derived neurotrophic factor levels in individuals with type 2 diabetes. PLoS One. 2012;7(8):e42785–e42787. doi: 10.1371/journal.pone.0042785.
    1. Chen A. Y., Kim S. E., Houtrow A. J., Newacheck P. W. Prevalence of obesity among children with chronic conditions. Obesity. 2010;18(1):210–213. doi: 10.1038/oby.2009.185.

Source: PubMed

3
Abonner