Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma

Rekin's Janky, Maria Mercedes Binda, Joke Allemeersch, Anke Van den Broeck, Olivier Govaere, Johannes V Swinnen, Tania Roskams, Stein Aerts, Baki Topal, Rekin's Janky, Maria Mercedes Binda, Joke Allemeersch, Anke Van den Broeck, Olivier Govaere, Johannes V Swinnen, Tania Roskams, Stein Aerts, Baki Topal

Abstract

Background: Pancreatic cancer is poorly characterized at genetic and non-genetic levels. The current study evaluates in a large cohort of patients the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC).

Methods: We performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 histologically normal pancreatic tissue samples. Cox regression models were used to study the effect on survival of molecular subtypes and 16 clinicopathological prognostic factors. In order to better understand the biology of PDAC we used iRegulon to identify transcription factors (TFs) as master regulators of PDAC and its subtypes.

Results: We confirmed the PDAssign gene signature as classifier of PDAC in molecular subtypes with prognostic relevance. We found molecular subtypes, but not clinicopathological factors, as independent predictors of survival. Regulatory network analysis predicted that HNF1A/B are among thousand TFs the top enriched master regulators of the genes expressed in the normal pancreatic tissue compared to the PDAC regulatory network. On immunohistochemistry staining of PDAC samples, we observed low expression of HNF1B in well differentiated towards no expression in poorly differentiated PDAC samples. We predicted IRF/STAT, AP-1, and ETS-family members as key transcription factors in gene signatures downstream of mutated KRAS.

Conclusions: PDAC can be classified in molecular subtypes that independently predict survival. HNF1A/B seem to be good candidates as master regulators of pancreatic differentiation, which at the protein level loses its expression in malignant ductal cells of the pancreas, suggesting its putative role as tumor suppressor in pancreatic cancer.

Trial registration: The study was registered at ClinicalTrials.gov under the number NCT01116791 (May 3, 2010).

Keywords: HNF1A/B; Master regulators; Molecular subtypes; Pancreatic ductal adenocarcinoma.

Figures

Fig. 1
Fig. 1
Expression heatmap for merged data. a Heatmap for 56 PDAssign genes vs 184 PDAC samples (+13 histologically normal pancreatic tissue samples as “Control” samples in grey). Samples are ordered and clustered by NMF clusters obtained from the NMF clustering of the merged PDAC data. Genes are clustered by hierarchical clustering using Pearson correlation distance (complete linkage). Sample legends show the sample clustering of the published subtypes (for the UCSF and GSE15471 tumors), but also the different predicted clusters from NMF of our 118 PDAC data (k3) and the predicted K-Ras dependency (kras) (see also Additional file 2: Figure S1 and Additional file 3: Figure S2). b Comparison of the predicted subtypes and known subtypes at the sample levels
Fig. 2
Fig. 2
Disease-free (DFS) and overall survival (OS) of patients according to molecular subtypes of PDAC. Molecular subtypes are predicted by using the published PDassign genes as a classifier of our PDAC samples. Survival according to 2 molecular subtypes (k2) classification: a DFS is significantly better for k2.cl1 (red line) than that for k2.cl2 (blue line) (p = 0.035). b No statistically significant difference in OS is observed between k2.cl1 (red line) vs. k2.cl2 (blue line) (p = 0.081). Survival according to 3 molecular subtypes (k3) classification: c DFS is significantly better for k3.cl1 (magenta line) than that for k3.cl2 (blue line) (p = 0.026). d No statistically significant difference in OS is observed between the 3 subtypes separately (p = 0.193); k3.cl1 (magenta line), k3.cl2 (blue line), k3.cl3 (orange line). Tables 1 and 2 provide more information on these survival curves
Fig. 3
Fig. 3
Master regulators in PDAC vs Control (histologically normal pancreatic tissue samples). a Result summary of the regulatory analysis with iRegulon on 2640 up regulated genes. b Venn diagram of the predicted up-regulated targets from AP1, ETS and IRF. c Results of the regulatory analysis with iRegulon on 1325 down-regulated genes. d Venn diagram of the predicted down-regulated targets from HNF1A/B and Nuclear Receptors. Raw results of the analysis are presented in Additional file 4: Table S3 and Additional file 5: Figure S4
Fig. 4
Fig. 4
Immunohistochemistry for HNF1β. a Strong nuclear expression in normal acinar parenchyma and normal ducts (upper part) while the expression is completely lost in a poorly differentiated PDAC (lower part) (Magnification 50x). b IHC shows a lower expression in high-grade dysplasia (upper part) compared to normal duct (arrow) (Magnification 100x). c IHC for HNF1β shows reduced expression in a well to moderately differentiated PDAC compared to a non-neoplastic duct (asterisk) (Magnification 200x). Histograms showing the histoscores corresponding to the left (a) (b) (c). Asterisk on the histogram indicates that the differences with each of the other categories are significant (Mann Whitney test, p < = 0.0294). d Normal pancreas (positive control) showing a strong staining in ducts and in the acinar parenchyma (Magnification 40x)

References

    1. Stewart BW, Wild CP, editors. World Cancer Report 2014. Lyon: IARC Nonserial Publication; 2014.
    1. Mukherjee S, Hurt CN, Bridgewater J, Falk S, Cummins S, Wasan H, Crosby T, Jephcott C, Roy R, Radhakrishna G, McDonald A, Ray R, Joseph G, Staffurth J, Abrams RA, Griffiths G, Maughan T. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol. 2013;14:317–26. doi: 10.1016/S1470-2045(13)70021-4.
    1. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlke J, Arning MB, Sinn M, Hinke A, Riess H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310:1473–81. doi: 10.1001/jama.2013.279201.
    1. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin S a, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703. doi: 10.1056/NEJMoa1304369.
    1. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero M a, Spellman PT, Hanahan D, Gray JW. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3. doi: 10.1038/nm.2344.
    1. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80.
    1. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
    1. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004;101:4164–9. doi: 10.1073/pnas.0308531101.
    1. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinformatics. 2010;11:367. doi: 10.1186/1471-2105-11-367.
    1. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1. doi: 10.1038/ng0506-500.
    1. Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS. Adjustment of systematic microarray data biases. Bioinformatics. 2003;20:105–14. doi: 10.1093/bioinformatics/btg385.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. doi: 10.1073/pnas.0506580102.
    1. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(Web Server issue):W77–83. doi: 10.1093/nar/gkt439.
    1. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, Settleman J. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15:489–500. doi: 10.1016/j.ccr.2009.03.022.
    1. Janky R, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, Hulselmans G, Herten K, Naval Sanchez M, Potier D, Svetlichnyy D, Kalender Atak Z, Fiers M, Marine J-C, Aerts S. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10:e1003731. doi: 10.1371/journal.pcbi.1003731.
    1. Hoskins JW, Jia J, Flandez M, Parikh H, Xiao W, Collins I, Emmanuel M a, Ibrahim A, Powell J, Zhang L, Malats N, Bamlet WR, Petersen GM, Real FX, Amundadottir LT. Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis. 2014;35:2670–8. doi: 10.1093/carcin/bgu193.
    1. Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K, Ishikawa O, Ohgaki K, Kashimura N, Miyamoto M, Hirano S, Kondo S, Katoh H, Nakamura Y, Katagiri T. Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene. 2004;23:2385–400. doi: 10.1038/sj.onc.1207392.
    1. Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7:163–72. doi: 10.1038/nrclinonc.2009.236.
    1. Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111:817–22. doi: 10.1038/bjc.2014.215.
    1. Cheng W-Y, Ou Yang T-H, Anastassiou D. Biomolecular events in cancer revealed by attractor metagenes. PLoS Comput Biol. 2013;9:e1002920. doi: 10.1371/journal.pcbi.1002920.
    1. Fink K, Grandvaux N. STAT2 and IRF9: beyond ISGF3. Jak-Stat. 2013;2:e27521. doi: 10.4161/jkst.27521.
    1. Postigo AA, Dean DC. ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci U S A. 1999;96:6683–8. doi: 10.1073/pnas.96.12.6683.
    1. Bronsert P, Kohler I, Timme S, Kiefer S, Werner M, Schilling O, Vashist Y, Makowiec F, Brabletz T, Hopt UT, Bausch D, Kulemann B, Keck T, Wellner UF. Prognostic significance of Zinc finger E-box binding homeobox 1 (ZEB1) expression in cancer cells and cancer-associated fibroblasts in pancreatic head cancer. Surgery. 2014;156:97–108. doi: 10.1016/j.surg.2014.02.018.
    1. Grisanzio C, Werner L, Takeda D, Awoyemi BC, Pomerantz MM, Yamada H, Sooriakumaran P, Robinson BD, Leung R, Schinzel AC, Mills I, Ross-Adams H, Neal DE, Kido M, Yamamoto T, Petrozziello G, Stack EC, Lis R, Kantoff PW, Loda M, Sartor O, Egawa S, Tewari AK, Hahn WC, Freedman ML. Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci U S A. 2012;109:11252–7. doi: 10.1073/pnas.1200853109.
    1. Berndt SI, Sampson J, Yeager M, Jacobs KB, Wang Z, Hutchinson A, Chung C, Orr N, Wacholder S, Chatterjee N, Yu K, Kraft P, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman C, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, et al. Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Hum Mol Genet. 2011;20:3322–9. doi: 10.1093/hmg/ddr213.
    1. Cuff J, Salari K, Clarke N, Esheba GE, Forster AD, Huang S, West RB, Higgins JP, Longacre TA, Pollack JR. Integrative bioinformatics links HNF1B with clear cell carcinoma and tumor-associated thrombosis. PLoS One. 2013;8:e74562. doi: 10.1371/journal.pone.0074562.
    1. Worley MJ, Welch WR, Berkowitz RS, Ng S-W. Endometriosis-associated ovarian cancer: a review of pathogenesis. Int J Mol Sci. 2013;14:5367–79. doi: 10.3390/ijms14035367.
    1. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide A-L, Cereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet. 2006;15:2363–75. doi: 10.1093/hmg/ddl161.
    1. Harrell JC, Dye WW, Harvell DME, Sartorius CA, Horwitz KB. Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis. 2008;25:81–8. doi: 10.1007/s10585-007-9105-7.
    1. Moffitt R a, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley K a, Rashid NU, Williams L a, Eaton SC, Chung AH, Smyla JK, Anderson JM, Kim HJ, Bentrem DJ, Talamonti MS, Iacobuzio-Donahue C a, Hollingsworth M a, Yeh JJ. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78. doi: 10.1038/ng.3398.
    1. Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Hargan Calvopina J, Patel SG, Wu N, Hindoyan A, Farrell JJ, Li X, Dawson DW, Wu H. Integrative Survival-Based Molecular Profiling of Human Pancreatic Cancer. Clin Cancer Res. 2012;18:1352–1363. doi: 10.1158/1078-0432.CCR-11-1539.
    1. Jiang X, Zhang W, Kayed H, Zheng P, Giese NA, Friess H, Kleeff J. Loss of ONECUT1 expression in human pancreatic cancer cells. Oncol Rep. 2008;19:157–63.
    1. Wang L, Coffinier C, Thomas MK, Gresh L, Eddu G, Manor T, Levitsky LL, Yaniv M, Rhoads DB. Selective deletion of the Hnf1beta (MODY5) gene in beta-cells leads to altered gene expression and defective insulin release. Endocrinology. 2004;145:3941–9. doi: 10.1210/en.2004-0281.
    1. Listing H, Mardin W a, Wohlfromm S, Mees ST, Haier J. MiR-23a/-24-induced gene silencing results in mesothelial cell integration of pancreatic cancer. Br J Cancer. 2014;112:131–9. doi: 10.1038/bjc.2014.587.
    1. Roy N, Malik S, Villanueva KE, Urano A, Lu X, Figura V, Seeley ES, Dawson DW, Collisson E a, Hebrok M, Von Figura G, Seeley ES, Dawson DW, Collisson E a, Hebrok M. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev. 2015;29:658–71. doi: 10.1101/gad.256628.114.
    1. Harries LW, Brown JE, Gloyn AL. Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One. 2009;4:e7855. doi: 10.1371/journal.pone.0007855.

Source: PubMed

3
Abonner