The Impact of Health Resort Treatment on the Nonenzymatic Endogenous Antioxidant System

Jadwiga Kuciel-Lewandowska, Michał Kasperczak, Bożena Bogut, Roman Heider, Wojciech T Laber, Wojciech Laber, Małgorzata Paprocka-Borowicz, Jadwiga Kuciel-Lewandowska, Michał Kasperczak, Bożena Bogut, Roman Heider, Wojciech T Laber, Wojciech Laber, Małgorzata Paprocka-Borowicz

Abstract

Introduction. Oxygen, reacting with organic compounds in living organisms, oxidizes them without being completely reduced due to numerous exogenous as well as endogenous factors. As a consequence, free radicals or reactive oxygen species are formed. Health resort-based balneophysiotherapy is a comprehensive therapeutic intervention that triggers positive therapeutic effects within the entire system. Material and Methods. The objective of the study was to assess the impact of health resort-based balneophysiotherapy on the levels of nonenzymatic endogenous antioxidants in patients with degenerative motor organ diseases, as well as to determine potential correlation of these changes with free radical-mediated processes. Observation was carried out in patients undergoing health resort therapy as part of 21-day stay periods. The study population consisted of n = 110 patients with articular and spinal pains due to degenerative diseases or discopathies.

Results: Reduced bilirubin and albumin levels as well as increased uric acid levels were observed in the study group following the health resort treatment.

Conclusions: Bilirubin and albumin levels were reduced while uric acid levels were increased as the result of health resort therapy in patients with degenerative motor organ diseases. The observed changes in the levels of nonenzymatic endogenous antioxidants depend on free radical-mediated systemic transformations. The trial is registered with NCT03405350.

Conflict of interest statement

The authors report no conflicts of interest in this work.

Copyright © 2020 Jadwiga Kuciel-Lewandowska et al.

Figures

Figure 1
Figure 1
Changes in the mean plasma levels of bilirubin, uric acid, and albumin in study group patients.
Figure 2
Figure 2
Changes in the mean plasma levels of bilirubin, uric acid, and albumin in control group subjects.

References

    1. Balcerczyk A., Bartosz G. Thiols are main determinants of total antioxidant capacity of cellular homogenates. Free Radical Research. 2003;37(5):537–541. doi: 10.1080/1071576031000083189.
    1. Galecka E., Jacewicz R., Mrowicka M., Florkowski A., Gałecki P. Antioxidative enzymes-structure, properties, functions. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego. 2008;25:266–269.
    1. Karpinska A., Gromadzka G. Oxidative stress and natural antioxidant mechanisms: the role in neurodegeneration. From molecular mechanisms to therapeutic strategies. Postępy Higieny i Medycyny Doświadczalnej. 2013;67:45–53. doi: 10.5604/17322693.1129686.
    1. Augustyniak A., Skrzydlewska E. Antioxidative abilities during aging. Postepy higieny i medycyny doswiadczalnej (Online) 2004;58:194–201.
    1. Duarte T. L., Lunec J. Review part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression review: when is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radical Research. 2005;39(7):671–686. doi: 10.1080/10715760500104025.
    1. Galecka E., Mrowicka M., Malinowska K., Gałecki P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego. 2008;25(147):269–272.
    1. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging. 2007;2(2):219–236.
    1. Zablocka A., Janusz M. The two faces of reactive oxygen species. Postȩpy Higieny i Medycyny Doświadczalnej. 2008;62:118–124.
    1. Helsten Y., Svensson M., Sjodin B., Christeinsen A., Richter E. A., Bangsbo J. Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radical Biology & Medicine. 2001;31(11):1313–1322. doi: 10.1016/S0891-5849(01)00631-1.
    1. Golec L. Oxidativestress. Polish Aviation Review. 2007;4(13):455–464.
    1. Lagowska-Lenard M., Bielewicz J., Raszewski G., Stelmasiak Z., Bartosik-Psujek H. Oxidative stress in cerebral storke. Polski Merkuriusz Lekarski. 2008;147:205–208.
    1. Źitanova I., Korytar P., Aruoma O., et al. Uric acid and allantoin levels in Down syndrome: antioxidant and oxidative stress mechanisms? Clinica Chimica Acta. 2004;341(1-2):139–146. doi: 10.1016/j.cccn.2003.11.020.
    1. Lippi G., Montagnana M., Franchini M., Favaloro E. J., Targher G. The paradoxical relationship between serum uric acid and cardiovascular disease. Clinica Chimica Acta. 2008;392(1-2):1–7. doi: 10.1016/j.cca.2008.02.024.
    1. Ekpenyong C., Akpan E. Abnormal serum uric acid levels in health and disease: a double-edged sword. American Journal of Internal Medicine. 2014;2(6):113–130. doi: 10.11648/j.ajim.20140206.15.
    1. Sautin Y. Y., Nakagawa T., Zharikov S., Johnson R. J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. American Journal of Physiology. Cell Physiology. 2007;293(2):C584–C596. doi: 10.1152/ajpcell.00600.2006.
    1. Reyes A. J. The increase in serum uric acid concentration caused by diuretics might be beneficial in heart failure. European Journal of Heart Failure. 2005;7(4):461–467. doi: 10.1016/j.ejheart.2004.03.020.
    1. Stinefelt B., Leonard S. S., Blemings K. P., Shi X., Klandorf H. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical and Laboratory Science. 2005;35(1):37–45.
    1. Mazzali M., Kanbay M., Segal M. S., et al. Uric acid and hypertension: cause or effect? Current Rheumatology Reports. 2010;12(2):108–117. doi: 10.1007/s11926-010-0094-1.
    1. Waring W. S. Hyperuricaemia does not impair cardiovascular function in healthy adults. Heart. 2004;90(2):155–159. doi: 10.1136/hrt.2003.016121.
    1. Zhou Z. X., Chen J. K., Hong Y. Y., et al. Relationship between the serum total bilirubin and inflammation in patients with psoriasis vulgaris. Journal of Clinical Laboratory Analysis. 2016;30(5):768–775. doi: 10.1002/jcla.21936.
    1. Kawamoto R., Ninomiya D., Hasegawa Y., et al. Mildly elevated serum total bilirubin levels are negatively associated with carotid atherosclerosis among elderly persons with type 2 diabetes. Clinical and Experimental Hypertension. 2016;38(1):107–112. doi: 10.3109/10641963.2015.1060990.
    1. Novotny L., Vitek L. Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Experimental Biology and Medicine. 2003;228(5):568–571. doi: 10.1177/15353702-0322805-29.
    1. Stec D. E., John K., Trabbic C. J., et al. Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One. 2016;11(4, article e0153427) doi: 10.1371/journal.pone.0153427.
    1. Zelenka J., Dvořák A., Alán L., Zadinová M., Haluzík M., Vítek L. Hyperbilirubinemia protects against aging-associated inflammation and metabolic deterioration. Oxidative Medicine and Cellular Longevity. 2016;2016:10. doi: 10.1155/2016/6190609.6190609
    1. Ziberna L., Martelanc M., Franko M., Passamonti S. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Scientific Reports. 2016;6(1):p. 29240. doi: 10.1038/srep29240.
    1. Hatfield G. L., Barclay L. R. C. Bilirubin as an antioxidant: kinetic studies of the reaction of bilirubin with peroxyl radicals in solution, micelles, and lipid bilayers. Organic Letters. 2004;6(10):1539–1542. doi: 10.1021/ol040016k.
    1. Gburek J., Gołab K., Juszczynska K. Renal catabolism of albumin – current views and controversies. Postępy Higieny i Medycyny Doświadczalnej. 2011;65:668–677. doi: 10.5604/17322693.964329.
    1. Vincent J. L. Relevance of albumin in modern critical care medicine. Best Practice & Research. Clinical Anaesthesiology. 2009;23(2):183–191. doi: 10.1016/j.bpa.2008.11.004.
    1. Plantier J.-L., Duretz V., Devos V., Urbain R., Jorieux S. Comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals. 2016;44(4):226–233. doi: 10.1016/j.biologicals.2016.04.002.
    1. Bartosz G. The second face of oxygen. Free radicals in nature. Wyd. Nauk. PWN, Warszawa; 2004.
    1. Mirończuk-Chodakowska I., Witkowska A. M., Zujko M. E. Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences. 2018;63(1):68–78. doi: 10.1016/j.advms.2017.05.005.
    1. Haberman F., Tang S. C., Arumugam T. V., et al. Soluble neuroprotective antioxidant uric acid analogs ameliorate ischemic brain injury in mice. Neuromolecular Medicine. 2007;9(4):315–323. doi: 10.1007/s12017-007-8010-1.
    1. Romanos E., Planas A. M., Amaro S. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. Journal of Cerebral Blood Flow & Metabolism. 2007;27(1):14–20. doi: 10.1038/sj.jcbfm.9600312.
    1. Milionis H. J., Kalantzi K. J., Goudevenos J. A., Seferiadis K., Mikhailidis D. P., Elisaf M. S. Serum uric acid levels and risk for acute ischaemic nonembolic stroke in elderly subjects. Journal of Internal Medicine. 2005;258(5):435–441. doi: 10.1111/j.1365-2796.2005.01565.x.
    1. Weier C. J., Muir S. W., Walters M. R. Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke. Stroke. 2003;34(8):1951–1956. doi: 10.1161/01.STR.0000081983.34771.D2.
    1. Chamorro A., Obach V., Cervera A. Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke. 2002;33(4):1048–1052. doi: 10.1161/hs0402.105927.
    1. Miller E., Kedziora J. Effects of whole body cyotherapy on uric acid concentration in multilple sclerosis patients. International Review of Allergology and Clinical Immunology. 2011;17:1–2.
    1. Pingitore A., Lima G. P., Mastorci F., Quinones A., Iervasi G., Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7-8):916–922. doi: 10.1016/j.nut.2015.02.005.
    1. Zielinski J., Pogorski T., Domaszewska K., Kusy K., Michalak E. Differences i the antioxidant potential between the preparatory and competitive period in sprinters of the polish national team. Sports Medicine. 2008;4(6):213–223.
    1. Augustyniak A., Skrzydlewska E. Antioxidative during aging. Adv Hig Exp Med (online) 2004;58:194–201.
    1. Miller A., Jędrzejczak W. Albumin-biological functions and clinical relevance. Adv Hig Exp Med. 2001;55:17–36.
    1. Frih B., Jaafar H., Mkacher W., Ben S. Z., Hammami M., Frih A. The effect of interdialytic combined resistance and aerobic exercise training on health related outcomes in chronic hemodialysis patients: the Tunisian randomized controlled study. Frontiers in Physiology. 2017;8 doi: 10.3389/fphys.2017.00288.
    1. Ryter S. W., Alam J., Choi A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews. 2006;86(2):583–650. doi: 10.1152/physrev.00011.2005.
    1. Miller E., Mrowicka M., Malinowska K., Mrowicki J., Saluk-Juszczak J., Kędziora J. The effects of whole-body cryotherapy on oxidative stress in multiple sclerosis patients. Journal of Thermal Biology. 2010;35(8):406–410. doi: 10.1016/j.jtherbio.2010.08.006.
    1. Reinisch N. Reduction der Sauerstoffradikalfreisetzung aus Neutophilen. In: Deetjen P., Falkenbach A., editors. Radon und Gesundheit. Frankfurt am Main: Pert Lang, Europäischer Verlag der Wissenschaften; 1999. pp. 75–82.
    1. Yamaoka K., Edamatsu R., Mori A. Increased SOD activities and decreased lipid peroxide levels induced by low dose X irradiation in rat organs. Free Radical Biology & Medicine. 1991;11(3):299–306. doi: 10.1016/0891-5849(91)90127-O.
    1. Kalmus P., Szynkowska L. Obserwations of the adaptive reactions in patients with inflammatory rheumatic diseases during healthh resort therapy. Acta Baln. 2015;2(140):97–105.

Source: PubMed

3
Abonner