Comparison of hyperspectral imaging and fluorescence angiography for the determination of the transection margin in colorectal resections-a comparative study

Boris Jansen-Winkeln, Isabell Germann, Hannes Köhler, Matthias Mehdorn, Marianne Maktabi, Robert Sucher, Manuel Barberio, Claire Chalopin, Michele Diana, Yusef Moulla, Ines Gockel, Boris Jansen-Winkeln, Isabell Germann, Hannes Köhler, Matthias Mehdorn, Marianne Maktabi, Robert Sucher, Manuel Barberio, Claire Chalopin, Michele Diana, Yusef Moulla, Ines Gockel

Abstract

Purpose: One relevant aspect for anastomotic leakage in colorectal surgery is blood perfusion of both ends of the anastomosis. The clinical evaluation of this issue is limited, but new methods like fluorescence angiography with indocyanine green or non-invasive and contactless hyperspectral imaging have evolved as objective parameters for perfusion evaluation.

Methods: In this prospective, non-randomized, open-label and two-arm study, fluorescence angiography and hyperspectral imaging were compared in 32 consecutive patients with each other and with the clinical assessment by the surgeon. After preparation of the bowel and determination of the surgical resection line, the tissue was evaluated with hyperspectral imaging for 5 min before and after cutting the marginal artery and assessed by 6 hyperspectral pictures followed by fluorescence angiography with indocyanine green.

Results: In 30 of 32 patients, the image data could be evaluated and compared. Both methods provided a comparable borderline between well-perfused and poorly perfused tissue (p = 0.704). In 15 cases, the surgical resection line was shifted to the central position due to the imaging. The border zone was sharper in fluorescence angiography and best assessed 31 s after injection. With hyperspectral imaging, the border zone was visualized wider and with more differences between proximal and distal border.

Conclusion: Hyperspectral imaging and fluorescence angiography provide similar results in determining the perfusion border. Both methods allow a good and safe visualization of the blood perfusion at the central resection margin to create a well-perfused anastomosis.

Trial registration: This study was registered at Clinicaltrials.gov ( NCT04226781 ) on January 13, 2020.

Keywords: Anastomotic leak; Colorectal resection; Fluorescence angiography (FA); Hyperspectral imaging (HSI); Indocyanine green (ICG).

Conflict of interest statement

Hannes Köhler is an Employee of Diaspective GmbH. The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
a Bland Altman plot of the measured distances in cm to the forceps in HSI and ICG. Scattering of the points around the zero line indicated agreement of both measured distances. b Bland Altman plot of the measured width in centimeters. Scattering of the points above the zero line suggested disagreement of the width of the border zone in HSI-and ICG. (SD = standard deviation)
Fig. 2
Fig. 2
a–c An instrument marked the planned transection line. The ruler is best seen in the RGB picture (c). a, b Based on the respective minimum and maximum intensity of each image, border limit values were calculated. In this case, the HSI StO2 limit value 3 min after devascularisation was 70 and the FA/ICG value at the maximum initial flooding of the dye amounted to 131. The most central limit point in FA/ICG (a) and HSI (b) was marked and deviations to the instrument were measured. While FA pictures hardly any differences between the most proximal and distal point of the borderline (a), HSI shows a large distance between both points (b)
Fig. 3
Fig. 3
Distribution of the distance from the planned transection line to the visualized borderline in HSI and ICG data in cemtimeters
Fig. 4
Fig. 4
Most central and distal limit value in FA with ICG (a) and HSI StO2 (b). A similar course and width of both border zones are noticeable. b HSI StO2 image of a border zone with many color graduations between good proximal and poor distal perfusion. c Another patient’s HSI StO2 image with a clear and sharp borderline is showing the variety of border zones revealed with HSI

References

    1. Phillips B (2016) Reducing gastrointestinal anastomotic leak rates: review of challenges and solutions. OAS 5. 10.2147/OAS.S54936
    1. Jafari MD, Wexner SD, Martz JE, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220(1):82–92.e1. doi: 10.1007/s00464-013-2832-8.
    1. Matthiessen P, Hallböök O, Rutegård J, et al. Defunctioning stoma reduces symptomatic anastomotic leakage after low anterior resection of the rectum for cancer: a randomized multicenter trial. Ann Surg. 2007;246(2):207–214. doi: 10.1097/SLA.0b013e3180603024.
    1. Dana A, Telem MD, Edward H, Chin MD, Scott Q, Nguyen MD et al (2010) Risk factors for anastomotic leak following colorectal surgery. Am Med Assoc:1–6
    1. Frasson M, Flor-Lorente B, Rodríguez JLR, Granero-Castro P, Hervás D, Alvarez Rico MA, Brao MJ, Sánchez González JM, Garcia-Granero E, ANACO Study Group Risk factors for anastomotic leak after colon resection for cancer: multivariate analysis and nomogram from a multicentric, prospective, national study with 3193 patients. Ann Surg. 2015;262(2):321–330. doi: 10.1097/SLA.0000000000000973.
    1. Pommergaard HC, Gessler B, Burcharth J, Angenete E, Haglind E, Rosenberg J. Preoperative risk factors for anastomotic leakage after resection for colorectal cancer: a systematic review and meta-analysis. Color Dis. 2014;16(9):662–671. doi: 10.1111/codi.12618.
    1. Kingham TP, Pachter HL. Colonic anastomotic leak: risk factors, diagnosis, and treatment. J Am Coll Surg. 2009;208(2):269–278. doi: 10.1016/j.jamcollsurg.2008.10.015.
    1. Ozan A. Managing intraoperative blood pressure with norepinephrine: effects on perfusion and oxygenation of the intestinal tract. Anesthesiology. 2011;114:488–489. doi: 10.1097/ALN.0b013e31820bfb04.
    1. Goh SL, de Silva RP, Dhital K, Gett RM. Is low serum albumin associated with postoperative complications in patients undergoing oesophagectomy for oesophageal malignancies? Interact Cardiovasc Thorac Surg. 2015;20(1):107–113. doi: 10.1093/icvts/ivu324.
    1. Nessim C, Sidéris L, Turcotte S, Vafiadis P, Lapostole AC, Simard S, Koch P, Fortier LP, Dubé P. The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J Surg Res. 2013;183(2):567–573. doi: 10.1016/j.jss.2013.03.030.
    1. Glatz T, Boldt J, Timme S, Kulemann B, Seifert G, Holzner PA, Chikhladze S, Grüneberger JM, Küsters S, Sick O, Höppner J, Hopt UT, Marjanovic G. Impact of intraoperative temperature and humidity on healing of intestinal anastomoses. Int J Color Dis. 2014;29(4):469–475. doi: 10.1007/s00384-014-1832-z.
    1. Kawada K, Hasegawa S, Wada T, Takahashi R, Hisamori S, Hida K, Sakai Y. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc. 2017;31(3):1061–1069. doi: 10.1007/s00464-016-5064-x.
    1. Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, Sakai Y. ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc. 2017;31(10):4184–4193. doi: 10.1007/s00464-017-5475-3.
    1. Urbanavičius L, Pattyn P, van de Putte D, et al. How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg. 2011;3(5):59–69. doi: 10.4240/wjgs.v3.i5.59.
    1. Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbeck's Arch Surg. 2010;395(8):1025–1030. doi: 10.1007/s00423-010-0699-x.
    1. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Color Dis. 2009;24(5):569–576. doi: 10.1007/s00384-009-0658-6.
    1. Jansen-Winkeln B, Maktabi M, Takoh JP, Rabe SM, Barberio M, Köhler H, Neumuth T, Melzer A, Chalopin C, Gockel I. Hyperspektral-Imaging bei gastrointestinalen Anastomosen (Hyperspectral imaging of gastrointestinal anastomoses) Chirurg. 2018;89(9):717–725. doi: 10.1007/s00104-018-0633-2.
    1. Gockel I, Jansen-Winkeln B, Holfert N, Rayes N, Thieme R, Maktabi M, Sucher R, Seehofer D, Barberio M, Diana M, Rabe SM, Mehdorn M, Moulla Y, Niebisch S, Branzan D, Rehmet K, Takoh JP, Petersen TO, Neumuth T, Melzer A, Chalopin C, Köhler H. Möglichkeiten und Perspektiven der Hyperspektralbildgebung in der Viszeralchirurgie (Possibilities and perspectives of hyperspectral imaging in visceral surgery) Chirurg. 2020;91(2):150–159. doi: 10.1007/s00104-019-01016-6.
    1. Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
    1. Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151(5):745–751.e1. doi: 10.1016/j.ajo.2011.01.043.
    1. Carus T. Fluoreszenzangiographie (Fluorescence angiography) Chirurg. 2019;90(11):873–874. doi: 10.1007/s00104-019-01038-0.
    1. Carus T, Pick P. Intraoperative Fluoreszenzangiographie in der kolorektalen Chirurgie (Intraoperative fluorescence angiography in colorectal surgery) Chirurg. 2019;90(11):887–890. doi: 10.1007/s00104-019-01042-4.
    1. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213. doi: 10.1097/.
    1. Jansen-Winkeln B, Holfert N, Köhler H, Moulla Y, Takoh JP, Rabe SM, Mehdorn M, Barberio M, Chalopin C, Neumuth T, Gockel I. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI) Int J Color Dis. 2019;34(4):731–739. doi: 10.1007/s00384-019-03250-0.
    1. Holmer A, Marotz J, Wahl P, Dau M, Kämmerer PW. Hyperspectral imaging in perfusion and wound diagnostics - methods and algorithms for the determination of tissue parameters. Biomed Tech (Berl) 2018;63(5):547–556. doi: 10.1515/bmt-2017-0155.
    1. Bigdeli AK, Gazyakan E, Schmidt VJ, Hernekamp FJ, Harhaus L, Henzler T, Kremer T, Kneser U, Hirche C. Indocyanine green fluorescence for free-flap perfusion imaging revisited: advanced decision making by virtual perfusion reality in visionsense fusion imaging angiography. Surg Innov. 2016;23(3):249–260. doi: 10.1177/1553350615610651.
    1. schwarcz m VS3 Iridium Bedienungsanleitung
    1. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585–940526. doi: 10.1155/2012/940585.
    1. Ris F, Liot E, Buchs NC, Kraus R, Ismael G, Belfontali V, Douissard J, Cunningham C, Lindsey I, Guy R, Jones O, George B, Morel P, Mortensen NJ, Hompes R, Cahill RA, the Near-Infrared Anastomotic Perfusion Assessment Network VOIR Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg. 2018;105(10):1359–1367. doi: 10.1002/bjs.10844.
    1. Cahill RA, Mortensen NJ. Intraoperative augmented reality for laparoscopic colorectal surgery by intraoperative near-infrared fluorescence imaging and optical coherence tomography. Minerva Chir. 2010;65(4):451–462.
    1. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, Stamos MJ, Pigazzi A. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27(8):3003–3008. doi: 10.1007/s00464-013-2832-8.
    1. Watanabe J, Ishibe A, Suwa Y, Suwa H, Ota M, Kunisaki C, Endo I. Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study. Surg Endosc. 2020;34(1):202–208. doi: 10.1007/s00464-019-06751-9.
    1. Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J. Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg. 2015;102(2):e169–e176. doi: 10.1002/bjs.9725.
    1. Cahill RA, Ris F, Mortensen NJ. Near-infrared laparoscopy for real-time intra-operative arterial and lymphatic perfusion imaging. Color Dis. 2011;13(Suppl 7):12–17. doi: 10.1111/j.1463-1318.2011.02772.x.

Source: PubMed

3
Abonner