Diabetes mellitus and oxidative stress-A concise review

Ullah Asmat, Khan Abad, Khan Ismail, Ullah Asmat, Khan Abad, Khan Ismail

Abstract

Human body is continuously exposed to different types of agents that results in the production of reactive species called as free radicals (ROS/RNS) which by the transfer of their free unpaired electron causes the oxidation of cellular machinery. In order to encounter the deleterious effects of such species, body has got endogenous antioxidant systems or it obtains exogenous antioxidants from diet that neutralizes such species and keeps the homeostasis of body. Any imbalance between the RS and antioxidants leads to produce a condition known as "oxidative stress" that results in the development of pathological condition among which one is diabetes. Most of the studies reveal the inference of oxidative stress in diabetes pathogenesis by the alteration in enzymatic systems, lipid peroxidation, impaired Glutathione metabolism and decreased Vitamin C levels. Lipids, proteins, DNA damage, Glutathione, catalane and superoxide dismutase are various biomarkers of oxidative stress in diabetes mellitus. Oxidative stress induced complications of diabetes may include stroke, neuropathy, retinopathy and nephropathy. The basic aim of this review was to summarize the basics of oxidative stress in diabetes mellitus.

Figures

Figure 1
Figure 1
Pathophysiology of diabetes mellitus.
Figure 2
Figure 2
Free radicals induced cell injury.

References

    1. Al Homsi M.F., Lukic M.L. Department of Pathology and Medical Microbiology (Immunology Unit), Faculty of Medicine and Health Sciences, UAE University; Al Ain, United Arab Emirates: 1992. An Update on the pathogenesis of Diabetes Mellitus.
    1. American Diabetes Association Diagnosis and classification of diabetes. Diabetes Care. 2004;27(1):S5–S10.
    1. Asfandiyarova N., Kolcheva N., Ryazantsev I., Ryazantsev V. Risk factors for stroke in type 2 diabetes mellitus. Diab. Vasc. Dis. Res. 2007;3:57–60.
    1. Ayepola, O.R., Brooks, N.L., Oguntibeju, O.O. 2014. Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids. <>.
    1. Bansal A.K., Bilaspuri G.S. Impacts of oxidative stress and antioxidants on semen functions (review article) Vet. Med. Int. 2011
    1. Butterfiel Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann. N.Y. Acad. Sci. 1998;854:448–462.
    1. Ceriello A. Oxidative stress and diabetes-associated complications. Endocr. Pract. 2006;12(l):60–62.
    1. Cho K.-H., Wolkenhauer O. Analysis and modelling of signal transduction pathways in systems biology. Biochem. Soc. Trans. 2003;31(6):1503–1509.
    1. Defronzo R.A., Lily Ferrannini E. Lecture 1987, the triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37:667–687.
    1. Droge Wulf. Free radicals in the physiological control of cell function. Physiol. Rev. 2011;82:47–95.
    1. El Faramawy S.M., Rizk R.A. Spectrophotometric studies on antioxidants-doped liposomes. J. Am. Sci. 2011;7:363–369.
    1. Erejuwa O.O. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants. Oxid. Stress Dis. 2012:217–246.
    1. Esterbauer H., Schaur R.J.r., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 1991;11(1):81–128.
    1. Fang Yun-Zhong, Yang Sheng, Wu Guoyao. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18:872–879.
    1. Freidovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann. N.Y. Acad. Sci. 1999;893:13.
    1. Gill R.G., Haskins K. Molecular mechanisms underlying diabetes and other autoimmune diseases. Immunol. Today. 1993:49–51.
    1. Giugliano D., Ceriello A., Paolisso G. Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism. 1995;44(3):363–368.
    1. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721–724.
    1. Hatice P. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohuku J. Exp. Med. 2004;203:211–218.
    1. Jamieson Dana. The relation of free radical production to hyperoxia. Ann. Rev. Physiol. 1986;48:703–719.
    1. Johansen Jeanette Schultz. Oxidative stress and the use of antioxidants in diabetes. Cardiovas. Diabetol. 2005;4:5.
    1. Joshi S.R., Parikh R.M., Das A.K. Insulin-history, biochemistry, physiology and pharmacology. J. Assoc. Phys. India. 2007;55(L):19.
    1. Kangralkar V.A., Patil S.D., Bandivadekar R.M. Oxidative stress and diabetes: a review. Int. J. Pharm. Appl. 2010;1(1):38–45.
    1. Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes its Complications. 2001;15(4):203–210.
    1. Loghmani, E., 2005. Diabetes Mellitus: Type 1 and Type 2. In: Stang, J., Story, M. (Eds)., Guidelines for Adolescent Nutrition Services 2005.
    1. Maritim A.C., Sanders R.A., Watkins J.B. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 2003;17(1):24–38.
    1. Mark Percival, 1996. Antioxidants, Clinical Nutrition insights. NUT031 1/96 Rev. 10/98.
    1. Matough F.A., Budin S.B., Hamid Z.A., Alwahaibi N., Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J. 2012;12(1):5–18.
    1. Michael J.C., James M.C., Robbins VinayK. Pathalogic Basis of Disease. sixth ed. Harcourt Publisher; 2000. The pancreas; pp. 902–929.
    1. Mohan Harsh. fourth ed. Jaypee publishers; 2002. Textbook of Pathology.
    1. Moussa S.A. Oxidative stress in diabetes mellitus. Romanian J. Biophys. 2008;18(3):225–236.
    1. Nishigaki I., Hagihara M., Tsunekawa H., Maseki M., Yagi K. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem. Med. 198. 1981;25(3):373–378.
    1. Nosratola D. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 2003;63:179–185.
    1. Ozougwu J.C., Obimba K.C., Belonwu C.D., Unakalamba C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013;4(4):46–57.
    1. Patel H., Chen J., Das K.C., Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc. Dialectol. 2013;12(1):142–146.
    1. Patricia P.M. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr. Opin. Pharmacol. 2009;9:771–779.
    1. Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. IJBS. 2008;4(2):89–96.
    1. Phillips M., Cataneo R.N., Cheema T., Greenberg J. Increased breath biomarkers of oxidative stress in diabetes mellitus. Clin. Chim. Acta. 2004;344(1-2):189–194.
    1. Savita Khanna, 2000. Thiol Antioxidants, Ph.D. Dissertation. Department of Physiology University of Kuopio, Kuopio, Finland.
    1. Sen S. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 2010;3(1):91–100.
    1. Sies H. Elsevier; Florida: 1985. Oxidative Stress.
    1. Somogyi Aniḱo. Antioxidant measurements. Physiol. Meas. 2007;28:R41–R55.
    1. Tiwari B.K. Markers of oxidative stress during diabetes mellitus. J. Biomarkers. 2013 (Article ID 378790)
    1. Wallace J.I. Management of diabetes in elderly. Clin. Diabetes. 2004;17:1.
    1. Weseler A.R., Bast A. Oxidative stress and vascular function: implications for pharmacologic treatments. Curr. Hypertension Rep. 2010;12(3):154–161.
    1. Yagi H., Matsumoto M., Kunimoto K., Kawaguchi J., Makino S., Harada M. Analysis of the roles of CD4+ T cells in autoimmune diabetes of NOD mice using transfer to NOD male mice. Eur. J. Immunol. 1992;22:2387–2393.
    1. Ylä-Herttuala S. Oxidized LDL and atherogenesis. Ann. N.Y. Acad. Sci. 1999;874:134–137.

Source: PubMed

3
Abonner