Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus

Monisha Banerjee, Pushpank Vats, Monisha Banerjee, Pushpank Vats

Abstract

Type 2 diabetes mellitus (T2DM), by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs) interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2(-)) has been found in a variety of predominating cellular enzyme systems including NAD(P)H oxidase, xanthine oxidase (XO), cyclooxygenase (COX), uncoupled endothelial nitric oxide synthase (eNOS) and myeloperoxidase (MPO). The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE) formation; activation of protein kinase C (PKC) isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), nitric oxide synthase (NOS) are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.

Keywords: Antioxidants; Oxidative stress; Polymorphisms; Reactive metabolites; Type 2 diabetes mellitus.

Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Outline of various sources of reactive oxygen species (ROS) and action of antioxidant enzymes. Superoxide anion O2− is formed by several metabolic and enzymatic sources within the cell. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase uses NADPH as a substrate, and is considered an important source of ROS. The lipoxygenases (LO) and cyclooxygenases (COX) generate ROS indirectly by promoting formation of inflammatory mediators. Arachidonic acid (AA) cleaved from the membrane by phospholipase A2 (PLA2) is metabolized by 5-LO in the presence of accessory protein (FLAP) to form leukotrienes (LTs). Mitochondria also generate superoxide as electrons are transferred from complexes I to IV during normal cellular respiration. Xanthine oxidase (XO), which converts hypoxanthine and xanthine to uric acid is an additional source of ROS. Finally, endothelial nitric oxide synthase (eNOS) uncouples to generate superoxide in preference to NO. Q indicates coenzyme Q; C, cytochrome C; FAD flavin adenine dinucelotide; FMN, flavin mononucleotide; FE, heme iron; BH4, tetrahydrobiopterin; GPx Glutathione peroxidase; GSH Glutathione; GSSG Glutathione disulfide; and G6PD Glucose-6-phosphate dehydrogenase.
Fig. 2
Fig. 2
Schematic representation of oxidative stress and the pathways leading to T2DM and its complications. Reactive oxygen species (ROS), reactive nitrogen species (RNS) and oxidative stress induced by elevations in glucose and free fatty acid (FFA) levels play a key role in causing insulin resistance and β-cell dysfunction by activating stress-sensitive signaling pathways. The proposed sequences of events include other stress pathways such as, increased production of advanced glycosylated end (AGE) products, sorbitol, cytokines, prostanoids and hexosamines. ROS and RNS play a key role in the pathogenesis of diabetes by inflicting macromolecular damage. ROS also function as signaling molecules to activate several stress-sensitive pathways such as nuclear factor kappa-light-chain-enhancer of activated cells (NF-kB), p38 class of mitogen activated protein kinases (P38MAPK), janus kinase/signal transducer and activator of transcription (JAK/STAT) by elevations in glucose and possibly FFA levels leading to both insulin resistance and impaired insulin secretion.

References

    1. Moore D.J., Gregory J.M., Kumah- crystal Y.A., Simmons J.H. Mitigating micro- and macro- vascular complications of diabetes bigining in adolescence. Vasc. Health Risk Manag. 2009;5:1015–1031.
    1. .
    1. Banerjee M., Saxena M. An overview and molecular genetics of type 2 diabetes mellitus. In: Caplis I., Frangopoulos. S., editors. Type 2 Diabetes Mellitus: Causes, Treatment and Preventive Strategies. Nova Science Publishers Inc; New York: 2012. pp. 1–64.
    1. Kassab A., Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie. 2012;94:1837–1848.
    1. Johansen J.S., Harris A.K., Rychly D.J., Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol. 2005;4:5.
    1. Taniyama Y., Griendling K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertention. 2003;42:1075–1081.
    1. Bonini M.G., Augusto O. Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 2001;276:9749–9754.
    1. Savenkova M.L., Mueller D.M., Heinecke J.W. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J. Biol. Chem. 1994;269:20394–20400.
    1. Sanchez-Gomez F.J., Espinosa-Diez C.E., Dubey M., Dikshit M., Lamas S. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol. Chem. 2013;394:1263–1280.
    1. Woods A.A., Linton S.M., Davies M.J. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem. J. 2003;370:729–735.
    1. Muller C.F., Laude K., Mcnally J.S., Harrison D.G. ATVB in focus: redox mechanisms in blood vessels. Arterioscler., Thromb. Vasc. Biol. 2005;25:274–278.
    1. Leopold J.A., Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005;25:1332–1340.
    1. Leopold J.A., Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radic. Biol. Med. 2009;47:1673–1706.
    1. Hayden M.R., Tyagi S.C. Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus: Atheroscleropathy. Cardiovasc. Diabetol. 2002;1:3.
    1. Hayden M.R., Tyagi S.C. Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. J. Pancreas. 2002;3:86–108.
    1. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010;107:1058–1070.
    1. Evcimen N.D., King G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res. 2007;55:498–510.
    1. Dey D., Mukherjee M., Basu D., Datta M., Roy S.S., Bandyopadhyay A., Bhattacharya S. Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein. Cell. Physiol. Biochem. 2005;16:217–228.
    1. Bloch-Damti A., Potashnik R., Gual P., Le Marchand-Brustel Y., Tanti J.F., Rudich A., Bashan N. Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress. Diabetologia. 2006;49:2463–2473.
    1. Tanti J.F., Jager J. Cellular mechanisms of insulin resistance: role of stress regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr. Opin. Pharmacol. 2009;9:753–762.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–820.
    1. Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L.O., Procopio J., Morgan D., Oliveira-Emilio H.C., Carpinelli A.R., Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol. 2007;583:9–24.
    1. Alexander S.A., Kolodgie F.D., Munn D.H., Gerrity R.G. Regulation of macrophage foam cell formation by αVβ3 integrin. Am. J. Pathol. 2004;165:247–258.
    1. Grendling K.K., FitzGerald G.A. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108:1912–1916.
    1. Verma S., Sagar N., Vats P., Shukla K.N., Abbas M., Banerjee M. Antioxidant enzyme levels as markers for type 2 diabetes mellitus. Int. J. Bioassays. 2013;2:685–690.
    1. Fujimoto H., Taguchi J., Imai Y., Ayabe S., Hashimoto H., Kobayashi H., Ogasawara K., Aizawa T., Yamakado M., Nagai R. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur. Heart J. 2008;29:1267–1274.
    1. Kakko S., Paivansalo M., Koistinen P., Kesaniemi Y.A., Kinnula V.L., Savolainen M.J. The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis. 2003;168:147–152.
    1. Yamakura F., Kawasaki H. Post-translational modifications of superoxide dismutase. Biochim. Biophys. Acta (BBA) – Proteins Proteomics. 2010;1804:318–325.
    1. Lee S.J., Choi M.G. Association of manganese superoxide dismutase gene polymorphism (V16A) with diabetic macular edema in Korean type 2 diabetic patients. Metabolism. 2006;55:1681–1688.
    1. Flekac M., Skrha J., Hilgertova J., Lacinova Z., Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med. Genet. 2008;9:30.
    1. Pacal L., Varvarovska J., Rusavy Z., Lacigova S., Stetina R., Racek J., Pomahacova R., Tanhauserova V., Kankova K. Parameters of oxidative stress, DNA damage and DNA repair in type 1 and type 2 diabetes mellitus. Arch. Physiol. Biochem. 2011;117:222–230.
    1. Yamashita K., Takahiro K., Kamezaki F., Adachi T., Tasaki H. Decreased plasma extracellular superoxide dismutase level in patients with vasospastic angina. Atherosclerosis. 2007;191:147–152.
    1. Liao M., Liu Z., Bao J., Zhao Z., Hu J., Feng X., Feng R., Lu Q., Mei Z., Liu Y. A proteomic study of the aortic media in human thoracic aortic dissection: implication for oxidative stress. J. Thorac. Cardiovasc. Surg. 2008;136:65–72.
    1. Juul K., Tybjaerg-Hansen A., Marklund S., Heegaard N.H., Steffensen R., Sillesen H., Jensen G., Nordestgaard B.G. Genetically reduced antioxidative protection and increased ischemic heart disease risk: the Copenhagen city heart study. Circulation. 2004;109:59–65.
    1. Goth L., Lenkey A., Bigler W.N. Blood catalase deficiency and diabetes in Hungary. Diabetes Care. 2001;24:1839–1840.
    1. Goth L. Catalase deficiency and type 2 diabetes. Diabetes Care. 2008;24:e93.
    1. Forsberg L., Lyrenas L., de Faire U., Morgenstern R. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic. Biol. Med. 2001;30:500–505.
    1. Vitai M., Fatrai S., Rass P., Csordas M., Tarnai I. Simple PCR heteroduplex, SSCP mutation screening methods for the detection of novel catalase mutations in Hungarian patients with type 2 diabetes mellitus. Clin. Chem. Lab. Med. 2005;43:1346–1350.
    1. Hirono A., Sasaya-Hamada F., Kanno H., Fujii H., Yoshida T., Miwa S. A novel human catalase mutation (358 T-->del) causing Japanese-type acatalasemia. Blood Cells, Mol. Dis. 1995;21:232–234.
    1. Ghosh S., Janocha A.J., Aronica M.A., Swaidani S., Comhair S.A., Xu W., Zheng L., Kaveti S., Kinter M., Hazen S.L. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J. Immunol. 2006;176:5587–5597.
    1. Chen H., Yu M., Li M., Zhao R., Zhu Q., Zhou W., Lu M., Lu Y., Zheng T., Jiang J. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol. Cell. Biochem. 2012;363:85–91.
    1. Dos Santos K.G., Canani L.H., Gross J.L., Tschiedel B., Souto K.E., Roisenberg I. The catalase −262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes. Dis. Markers. 2006;22:355–359.
    1. Tarnai I., Csordas M., Sukei E., Shemirani A.H., Kalpar M., Goth L. Effect of C111T polymorphism in exon 9 of the catalasegene on blood catalase activity in different types of diabetes mellitus. Free Radic. Res. 2007;41:806–811.
    1. Vats P., Chandra H., Banerjee M. Glutathione S-transferase and catalase gene polymorphisms with Type 2 diabetes mellitus. Dis. Mol. Med. 2013;1:46–53.
    1. Voetsch B., Jin R.C., Bierl C., Benke K.S., Kenet G., Simioni P., Ottaviano F., Damasceno B.P., Annichino-Bizacchi J.M., Handy D.E. Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke. 2007;38:41–49.
    1. Thameem F., Puppala S., Arar N.H., Stern M.P., Blangero J., Duggirala R., Abboud H.E. Endothelial nitric oxide synthase (eNOS) gene polymorphisms and their association with type 2 diabetes-related traits in Mexican Americans. Diabetes Vasc. Dis. Res. 2008;5:109–113.
    1. Makuc J., Petrovic D. No association between NOS2 and NOS3 polymorphisms and diabetic nephropathy in type 2 diabetics. Cent. Eur. J. Biol. 2012;7:404–410.
    1. Cilensek I., Mankoc S., Petrovic M.G., Petrovic D. GSTT1 null genotype is a risk factor for diabetic retinopathy in Caucasians with type 2 diabetes, whereas GSTM1 null genotype might confer protection against retinopathy. Dis. Markers. 2012;32:93–99.
    1. Prabhakar R., Morokuma K., Musaev D.G. Peroxynitrite reductase activity of selenoprotein glutathione peroxidase: a computational study. Biochemistry. 2006;45:6967–6977.
    1. Blankenberg S., Rupprecht H.J., Bickel C., Torzewski M., Hafner G., Tiret L., Smieja M., Cambien F., Meyer J., Lackner K.J. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 2003;349:1605–1613.
    1. Winter J.P., Gong Y., Grant P.J., Wild C.P. Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron. Artery Dis. 2003;14:149–153.
    1. Ramprasath T., Murugan P.S., Prabakaran A.D., Gomathi P., Rathinavel A., Selvam G.S. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem. Biophys. Res. Commun. 2011;407:49–53.
    1. Ramprasath T., Murugan P.S., Kalaiarasan E., Gomathi P., Rathinavel A., Selvam G.S. Genetic association of Glutathione peroxidase-1 (GPx-1) and NAD(P)H:Quinone Oxidoreductase 1(NQO1) variants and their association of CAD in patients with type-2 diabetes. Mol. Cell. Biochem. 2012;361:143–150.
    1. Seiler A., Schneider M., Forster H., Roth S., Wirth E.K., Culmsee C., Plesnila N., Kremmer E., Radmark O., Wurst W. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–248.
    1. Loscalzo J. Membrane redox state and apoptosis: death by peroxide. Cell. Metab. 2008;8:182–183.
    1. Miller E.A., Pankow J.S., Millikan R.C., Bray M.S., Ballantyne C.M., Bell D.A., Heiss G., Li R. Glutathione- S-transferase genotypes, smoking, and their association with markers of inflammation, hemostasis and endothelial function: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis. 2003;171:265–272.
    1. Oniki K., Umemoto Y., Nagata R., Hori M., Mihara S., Marubayashi T., Nakagawa K. Glutathione S-transferase A1 polymorphism as a risk factor for smoking-related type 2 diabetes among Japanese. Toxicol. Lett. 2008;178:143–145.
    1. Bid H.K., Konwar R., Saxena M., Chaudhari P., Agarwal C.G., Banerjee M. Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J. Postgrad. Med. 2010;56:176–181.
    1. Amer M.A., Ghattas M.H., Abo-Elmatty D.M., Abou-El-Ela S.H. Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk. Genet. Mol. Res. 2011;10:3722–3730.
    1. Thameem F., Yang X., Permana P.A., Wolford J.K., Bogardus C., Prochazka M. Evaluation of the microsomal glutathione S-transferase 3 (MGST3) locus on 1q23 as a Type 2 diabetes susceptibility gene in Pima Indians. Human Genet. 2003;113:353–358.
    1. Casas J.P., Cavalleri G.L., Bautista L.E., Smeeth L., Humphries S.E., Hingorani A.D. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE review. Am. J. Epidemiol. 2006;164:921–935.
    1. Hayden M.R., Tyagi S.C. In type 2 diabetes mellitus a vascular disease (atheroscleropathy) with hyperglycemia a late manifestation? The role of NOS, NO and redox stress. Cardiovasc. Diabetol. 2003;2:2.
    1. Hingorani A.D. Endothelial nitric oxide synthase polymorphisms and hypertension. Curr. Hypertens. Rep. 2003;5:19–25.
    1. Veldman B.A., Spiering W., Doevendans P.A., Vervoort G., Kroon A.A., De Leeuw P.W., Smits P. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J. Hypertens. 2002;20:2023–2027.
    1. Duplain H., Burcelin R., Sartori C., Cook S., Egli M., Lepori M., Vollenweider P., Pedrazzini T., Nicod P., Thorens B. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104:342–345.
    1. Cromheeke K.M., Kockx M.M., De Meyer G.R., Bosmans J.M., Bult H., Beelaerts W.J.F., Vrints C.J., Herman A.G. Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques. Cardiovasc. Res. 1999;43:744–754.

Source: PubMed

3
Abonner