Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma

Eric Salazar, Katherine K Perez, Madiha Ashraf, Jian Chen, Brian Castillo, Paul A Christensen, Taryn Eubank, David W Bernard, Todd N Eagar, S Wesley Long, Sishir Subedi, Randall J Olsen, Christopher Leveque, Mary R Schwartz, Monisha Dey, Cheryl Chavez-East, John Rogers, Ahmed Shehabeldin, David Joseph, Guy Williams, Karen Thomas, Faisal Masud, Christina Talley, Katharine G Dlouhy, Bevin V Lopez, Curt Hampton, Jason Lavinder, Jimmy D Gollihar, Andre C Maranhao, Gregory C Ippolito, Matthew O Saavedra, Concepcion C Cantu, Prasanti Yerramilli, Layne Pruitt, James M Musser, Eric Salazar, Katherine K Perez, Madiha Ashraf, Jian Chen, Brian Castillo, Paul A Christensen, Taryn Eubank, David W Bernard, Todd N Eagar, S Wesley Long, Sishir Subedi, Randall J Olsen, Christopher Leveque, Mary R Schwartz, Monisha Dey, Cheryl Chavez-East, John Rogers, Ahmed Shehabeldin, David Joseph, Guy Williams, Karen Thomas, Faisal Masud, Christina Talley, Katharine G Dlouhy, Bevin V Lopez, Curt Hampton, Jason Lavinder, Jimmy D Gollihar, Andre C Maranhao, Gregory C Ippolito, Matthew O Saavedra, Concepcion C Cantu, Prasanti Yerramilli, Layne Pruitt, James M Musser

Abstract

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and no proven treatments are available. Convalescent plasma therapy has been used with varying degrees of success to treat severe microbial infections for >100 years. Patients (n = 25) with severe and/or life-threatening COVID-19 disease were enrolled at the Houston Methodist hospitals from March 28, 2020, to April 14, 2020. Patients were transfused with convalescent plasma, obtained from donors with confirmed severe acute respiratory syndrome coronavirus 2 infection who had recovered. The primary study outcome was safety, and the secondary outcome was clinical status at day 14 after transfusion. Clinical improvement was assessed on the basis of a modified World Health Organization six-point ordinal scale and laboratory parameters. Viral genome sequencing was performed on donor and recipient strains. At day 7 after transfusion with convalescent plasma, nine patients had at least a one-point improvement in clinical scale, and seven of those were discharged. By day 14 after transfusion, 19 (76%) patients had at least a one-point improvement in clinical status, and 11 were discharged. No adverse events as a result of plasma transfusion were observed. Whole genome sequencing data did not identify a strain genotype-disease severity correlation. The data indicate that administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease.

Copyright © 2020 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Respiratory support status, clinical score, patient outcomes (discharge/death), and receptor binding domain (RBD) titer of transfused plasma in a 25-patient cohort. Respiratory support requirements for the duration of hospitalization are color coded per the key. Discharge or death is indicated by open or closed squares, respectively. Patients without a square symbol were still hospitalized at day 14 after transfusion (study end point). Patient 16 was given a second transfusion on day 6, indicated by a vertical line. The convalescent plasma titers for the RBD domain of the severe acute respiratory syndrome coronavirus 2 spike protein are indicated to the left. ECMO, extracorporeal membrane oxygen; ELISA, enzyme-linked immunosorbent assay; NA, not available; NC, nasal cannula; NIPPV, noninvasive, positive-pressure ventilation.
Figure 2
Figure 2
Clinical outcomes at days 7 and 14 after transfusion. Distribution of patients on low-flow, high-flow, invasive, or no oxygen support at days 0 (day of transfusion), 7, and 14. By day 7 after transfusion, 36% (9/25) of patients had improved from baseline; 76% (19/25) of patients improved by day 14 after transfusion. Inv., Invasive.

References

    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Li R., Pei S., Chen B., Song Y., Zhang T., Yang W., Shaman J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2) Science. 2020;368:489–493.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473.
    1. Caly L., Druce J., Roberts J., Bond K., Tran T., Kostecki R., Yoga Y., Naughton W., Taiaroa G., Seemann T., Schultz M.B., Howden B.P., Korman T.M., Lewin S.R., Williamson D.A., Catton M.G. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med J Aust. 2020;212:459–462.
    1. Ghosal S., Sengupta S., Majumder M., Sinha B. Linear regression analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases - March 14th 2020) Diabetes Metab Syndr. 2020;14:311–315.
    1. Gudbjartsson D.F., Helgason A., Jonsson H., Magnusson O.T., Melsted P., Norddahl G.L. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382:2302–2315.
    1. Hodcroft E.B. Preliminary case report on the SARS-CoV-2 cluster in the UK, France, and Spain. Swiss Med Wkly. 2020;150:w20212.
    1. Piva S., Filippini M., Turla F., Cattaneo S., Margola A., De Fulviis S., Nardiello I., Beretta A., Ferrari L., Trotta R., Erbici G., Foca E., Castelli F., Rasulo F., Lanspa M.J., Latronico N. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. J Crit Care. 2020;58:29–33.
    1. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382:2327–2336.
    1. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V.E., Dupont H.T., Honore S., Colson P., Chabriere E., La Scola B., Rolain J.M., Brouqui P., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 [Epub ahead of print] doi: .
    1. Magagnoli J., Narendran S., Pereira F., Cummings T., Hardin J.W., Sutton S.S., Ambati J. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv. 2020 [Epub] doi: .
    1. Luke T.C., Kilbane E.M., Jackson J.L., Hoffman S.L. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med. 2006;145:599–609.
    1. Soo Y.O., Cheng Y., Wong R., Hui D.S., Lee C.K., Tsang K.K., Ng M.H., Chan P., Cheng G., Sung J.J. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004;10:676–678.
    1. Cheng Y., Wong R., Soo Y.O., Wong W.S., Lee C.K., Ng M.H., Chan P., Wong K.C., Leung C.B., Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44–46.
    1. Hung I.F., To K.K., Lee C.K., Lee K.L., Chan K., Yan W.W., Liu R., Watt C.L., Chan W.M., Lai K.Y., Koo C.K., Buckley T., Chow F.L., Wong K.K., Chan H.S., Ching C.K., Tang B.S., Lau C.C., Li I.W., Liu S.H., Chan K.H., Lin C.K., Yuen K.Y. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011;52:447–456.
    1. van Griensven J., Edwards T., de Lamballerie X., Semple M.G., Gallian P., Baize S., Horby P.W., Raoul H., Magassouba N., Antierens A., Lomas C., Faye O., Sall A.A., Fransen K., Buyze J., Ravinetto R., Tiberghien P., Claeys Y., De Crop M., Lynen L., Bah E.I., Smith P.G., Delamou A., De Weggheleire A., Haba N. Ebola-Tx Consortium: Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med. 2016;374:33–42.
    1. Duan K., Liu B., Li C., Zhang H., Yu T., Qu J. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117:9490–9496.
    1. Shen C., Wang Z., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Z., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Z., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;323:1582–1589.
    1. Ye M., Fu D., Ren Y., Wang F., Wang D., Zhang F., Xia X., Lv T. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020 [Epub ahead of print] doi: .
    1. Zhang B., Liu S., Tan T., Huang W., Dong Y., Chen L., Chen Q., Zhang L., Zhong Q., Zhang X., Zou Y., Zhang S. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest. 2020;158:e9–e13.
    1. Zeng Q.L., Yu Z.J., Gou J.J., Li G.M., Ma S.H., Zhang G.F., Xu J.H., Lin W.B., Cui G.L., Zhang M.M., Li C., Wang Z.S., Zhang Z.H., Liu Z.S. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. J Infect Dis. 2020;222:38–43.
    1. Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K.W., Bleicker T., Brünink S., Schneider J., Schmidt M.L., Mulders D., Haagmans B.L., van der Veer B., van den Brink S., Wijsman L., Goderski G., Romette J.L., Ellis J., Zambon M., Peiris M., Goossens H., Reusken C., Koopmans M.P.G., Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:2000045.
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263.
    1. ter Meulen J., van den Brink E.N., Poon L.L., Marissen W.E., Leung C.S., Cox F., Cheung C.Y., Bakker A.Q., Bogaards J.A., van Deventer E., Preiser W., Doerr H.W., Chow V.T., de Kruif J., Peiris J.S., Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3:e237.
    1. Tian X., Li C., Huang A., Xia S., Lu S., Shi Z., Lu L., Jiang S., Yang Z., Wu Y., Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382–385.
    1. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 2014;30:1312–1313.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:1–11.
    1. Klok F.A., Kruip M., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147.
    1. Long S.W., Olsen R.J., Christensen P.A., Bernard D.W., Davis J.J., Shukla M., Nguyen M., Saavedra M.O., Cantu C.C., Yerramilli P., Pruitt L., Subedi S., Hendrickson H., Eskandari G., Kumaraswami M., McLellan J.S., Musser J.M. Molecular architecture of early dissemination and evolution of the SARS-CoV-2 virus in Metropolitan Houston, Texas. bioRxiv. 2020 doi: 2020.05.01.072652.
    1. Brufsky A. Distinct viral clades of SARS-CoV-2: implications for modeling of viral spread. J Med Virol. 2020 [Epub ahead of print] doi: .
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292.e6.
    1. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.Y., Wang Q., Zhou H., Yan J., Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.e9.
    1. Shu Y., McCauley J. GISAID: global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22:30494.
    1. Chen L., Xiong J., Bao L., Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20:398–400.
    1. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck C.R., Convalescent Plasma Study Group The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211:80–90.
    1. Deng Y., Liu W., Liu K., Fang Y.Y., Shang J., Zhou L., Wang K., Leng F., Wei S., Chen L., Liu H.G. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J (Engl) 2020;133:1261–1267.
    1. Emami A., Javanmardi F., Pirbonyeh N., Akbari A. Prevalence of underlying diseases in hospitalized patients with COVID-19: a systematic review and meta-analysis. Arch Acad Emerg Med. 2020;8:e35.
    1. Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., Ji R., Wang H., Wang Y., Zhou Y. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95.
    1. Stockman L.J., Bellamy R., Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3:e343.
    1. Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., Pan A., Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117:10970–10975.
    1. Zhao J., Yang Y., Huang H., Li D., Gu D., Lu X., Zhang Z., Liu L., Liu T., Liu Y., He Y., Sun B., Wei M., Yang G., Wang X., Zhang L., Zhou X., Xing M., Wang P.G. Relationship between the ABO blood group and the COVID-19 susceptibility. medRxiv. 2020 [Epub] doi: .

Source: PubMed

3
Abonner