Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis

John Eraifej, William Clark, Benjamin France, Sebastian Desando, David Moore, John Eraifej, William Clark, Benjamin France, Sebastian Desando, David Moore

Abstract

Background: Stroke can lead to significant impairment of upper limb function which affects performance of activities of daily living (ADL). Functional electrical stimulation (FES) involves electrical stimulation of motor neurons such that muscle groups contract and create or augment a moment about a joint. Whilst lower limb FES was established in post-stroke rehabilitation, there is a lack of clarity on the effectiveness of upper limb FES. This systematic review aims to evaluate the effectiveness of post-stroke upper limb FES on ADL and motor outcomes.

Methods: Systematic review of randomised controlled trials from MEDLINE, PsychINFO, EMBASE, CENTRAL, ISRCTN, ICTRP and ClinicalTrials.gov. Citation checking of included studies and systematic reviews. Eligibility criteria: participants > 18 years with haemorrhagic/ischaemic stroke, intervention group received upper limb FES plus standard care, control group received standard care. Outcomes were ADL (primary), functional motor ability (secondary) and other motor outcomes (tertiary). Quality assessment using GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria.

Results: Twenty studies were included. No significant benefit of FES was found for objective ADL measures reported in six studies (standardised mean difference (SMD) 0.64; 95% Confidence Interval (CI) [-0.02, 1.30]; total participants in FES group (n) = 67); combination of all ADL measures was not possible. Analysis of three studies where FES was initiated on average within 2 months post-stroke showed a significant benefit of FES on ADL (SMD 1.24; CI [0.46, 2.03]; n = 32). In three studies where FES was initiated more than 1 year after stroke, no significant ADL improvements were seen (SMD -0.10; CI [-0.59, 0.38], n = 35). Quality assessment using GRADE found very low quality evidence in all analyses due to heterogeneity, low participant numbers and lack of blinding.

Conclusions: FES is a promising therapy which could play a part in future stroke rehabilitation. This review found a statistically significant benefit from FES applied within 2 months of stroke on the primary outcome of ADL. However, due to the very low (GRADE) quality evidence of these analyses, firm conclusions cannot be drawn about the effectiveness of FES or its optimum therapeutic window. Hence, there is a need for high quality large-scale randomised controlled trials of upper limb FES after stroke.

Trial registration: PROSPERO: CRD42015025162 , Date:11/08/2015.

Keywords: Functional electrical stimulation; Meta-analysis, neurorehabilitation; Stroke; Systematic review; Upper limb.

Figures

Fig. 1
Fig. 1
Flow diagram for included studies
Fig. 2
Fig. 2
SMD (95% CI) of functional electrical stimulation (FES) vs control on activities of daily living. a Non-patient recall based measures of ADL. b FES initiated within 2 months of stroke. c FES initiated after 1 year of stroke. d Visual representation of all ADL measures. AMAT Arm Motor Ability Test, CAHAI Chedoke Arm and Hand Activity Inventory, FIM Functional Independence Measure, UEFT Upper Extremity Function Test, HFG higher functioning group, LFG lower functioning group
Fig. 3
Fig. 3
SMD (95% CI) of functional electrical stimulation (FES) vs control on secondary outcomes (functional motor recovery). a FMA. b BBT. c Visual representation of all secondary outcome measures. MAS HM Motor Assessment Scale Hand Movements, MAS UAF Motor Assessment Scale Upper Arm Function, FMA Fugl-Meyer Assessment, BBT Box and Block Test, ARAT Action Research Arm Test, FTHUE Functional Test for the Hemiparetic Upper Extremity, RELHT Rehabilitation Engineering Laboratory Hand Test (Block subscore shown here), CMSA Chedoke McMasters Stroke Assessment, 9HPT Nine Hole Peg Test, 10CMT Ten Cup Moving Test, 5s 5-second stimulation pulse duration, 10s 10-second stimulation pulse duration
Fig. 4
Fig. 4
Visual representation of SMD (95% CI) of functional electrical stimulation (FES) vs control on tertiary outcomes. a Modified Ashworth Scale, upper limb component presented. b Force generation, muscle group/movement presented

References

    1. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ. 1976;54(5):541–553.
    1. Lynch CL, Popovic MR. Functional electrical stimulation. IEEE Control Syst Mag. 2008;28(2):40–50. doi: 10.1109/MCS.2007.914692.
    1. Rothwell PM, Coull AJ, Silver LE, et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study) Lancet. 2005;366:1773–83. doi: 10.1016/S0140-6736(05)67702-1.
    1. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85(2):201–215.
    1. Franceschini M, La Porta F, Agosti M, et al. Is health-related-quality of life of stroke patients influenced by neurological impairments at one year after stroke? Eur J Phys Rehabil Med. 2010;46(3):389–399.
    1. Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–2186. doi: 10.1161/.
    1. Lai SM, Studenski S, Duncan PW, et al. Persisting consequences of stroke measured by the stroke impact scale. Stroke. 2002;33(7):1840–1844. doi: 10.1161/01.STR.0000019289.15440.F2.
    1. Sveen U, Bautz-Holter E, Sodring KM, et al. Association between impairments, self-care ability and social activities 1 year after stroke. Disabil Rehabil. 1999;21(8):372–377. doi: 10.1080/096382899297477.
    1. Clinical Knowledge Summary: Stroke and TIA. National Institute for Health and Care Excellence. . Published February, 2009. Updated December, 2013. Accessed 1 Jan 2016.
    1. Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top Stroke Rehabil. 2008;15(5):412–26. doi: 10.1310/tsr1505-412.
    1. Hara Y. Rehabilitation with functional electrical stimulation in stroke patients. Int J Phys Med Rehabil. 2013;1(6):147. doi: 10.4172/2329-9096.1000147.
    1. Hara Y, Obayashi S, Tsujiuchi K, et al. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin Neurophysiol. 2013;124(10):2008–2015. doi: 10.1016/j.clinph.2013.03.030.
    1. Joa KL, Han YH, Mun CW, et al. Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging. J Neuroeng Rehabil. 2012;9:48. doi: 10.1186/1743-0003-9-48.
    1. Barsi GI, Popovic DB, Tarkka IM, et al. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res. 2008;191(1):57–66. doi: 10.1007/s00221-008-1495-5.
    1. Nahum M, Lee H, Merzenich MM. Principles of neuroplasticity-based rehabilitation. Prog Brain Res. 2013;207:141–171. doi: 10.1016/B978-0-444-63327-9.00009-6.
    1. Takeuchi N, Izumi S. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013:128641.
    1. Pereira S, Mehta S, McIntyre A, et al. Functional electrical stimulation for improving gait in persons with chronic stroke. Top Stroke Rehabil. 2012;19(6):491–498. doi: 10.1310/tsr1906-491.
    1. Robbins SM, Houghton PE, Woodbury MG, et al. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: A meta-analysis. Arch Phys Med Rehabil. 2006;87(6):853–859. doi: 10.1016/j.apmr.2006.02.026.
    1. Roche A, Laighin G, Coote S. Surface-applied functional electrical stimulation for orthotic and therapeutic treatment of drop-foot after stroke - a systematic review. Phys Ther Rev. 2009;14(2):63–80. doi: 10.1179/174328809X405946.
    1. Functional electrical stimulation for drop foot of central neurological origin. National Institute for Health and Care Excellence. . Published January, 2009. Updated January 9th, 2012. Accessed 1 Jan 2016.
    1. National clinical guideline for stroke. Royal College of Physicians. . Published Fifth Edition October, 2016. Accessed 13 Oct 2016.
    1. Veerbeek JM, Kwakkel G, van Wegen EE, et al. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke. 2011;42(5):1482–8. doi: 10.1161/STROKEAHA.110.604090.
    1. Stroke rehabilitation in adults. National Institute for Health and Care Excellence. . Published June 2013. Accessed 1 Jan 2016.
    1. Meilink A, Hemmen B, Seelen HA, et al. Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: A systematic review of the literature. Clin Rehabil. 2008;22(4):291–305. doi: 10.1177/0269215507083368.
    1. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, et al. The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clin Rehabil. 2004;18(8):833–862. doi: 10.1191/0269215504cr843oa.
    1. Bolton DA, Cauraugh JH, Hausenblas HA. Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: A meta-analysis. J Neurol Sci. 2004;223(2):121–127. doi: 10.1016/j.jns.2004.05.005.
    1. Howlett OA, Lannin NA, Ada L, et al. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96(5):934–943. doi: 10.1016/j.apmr.2015.01.013.
    1. Vafadar AK, Côté JN, Archambault PS, et al. Effectiveness of functional electrical stimulation in improving clinical outcomes in the upper arm following stroke: a systematic review and meta-analysis. BioMed Res Int. 2014;2015.
    1. Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014; 12(11)
    1. Eraifej J, Clark W, France B, et al. Does upper limb transcutaneous functional electrical stimulation after stroke improve motor outcomes? . Published August 11th, 2015. Updated January 11th, 2016. Accessed 23 June 2016.
    1. Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ. 2009;339:b2535. doi: 10.1136/bmj.b2535.
    1. Jorgensen HS, Nakayama H, Raaschou HO, et al. Outcome and time course of recovery in stroke, part II: time course of recovery, the Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(5):406–412. doi: 10.1016/S0003-9993(95)80568-0.
    1. Lee KB, Lim SH, Kim KH, et al. Six-month functional recovery of stroke patients: a multi-time-point study. Int J Rehabil Res. 2015;38(2):173–180. doi: 10.1097/MRR.0000000000000108.
    1. Kuptniratsaikul V, Kovindha A, Suethanapornkul S, Massakulpan P, Permsirivanich W, Kuptniratsaikul PS. Motor recovery of stroke patients after rehabilitation: one-year follow-up study. Int J Neurosci. 2016;29:1–7.
    1. Bitzer EM, Petrucci M, Lorenz C, et al. A comparison of conventional and retrospective measures of change in symptoms after elective surgery. Health Qual Life Outcomes. 2011;9:23. doi: 10.1186/1477-7525-9-23.
    1. McPhail S, Haines T. Response shift, recall bias and their effect on measuring change in health-related quality of life amongst older hospital patients. Health Qual Life Outcomes. 2010;8:65. doi: 10.1186/1477-7525-8-65.
    1. Prince SA, Adamo KB, Hamel ME, et al. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi: 10.1186/1479-5868-5-56.
    1. Redelmeier DA, Dickinson VM. Determining whether a patient is feeling better: pitfalls from the science of human perception. J Gen Intern Med. 2011;26(8):900–906. doi: 10.1007/s11606-011-1655-3.
    1. Reyes-Guzman ADL, Perez-Nombela S, Dimbwadyo-Terrer I, et al. Functional upper limb evaluation of activities of daily living in people with neurological disorders. In: Giroux J, Vallee G, et al., editors. Activities of daily living: performance, impact on life quality and assistance. Hauppauge, New York: Nova Science Publishers; 2013. pp. 55–76.
    1. Williamson PR, Altman DG, Blazeby JM, et al. Developing core outcome sets for clinical trials: Issues to consider. Trials. 2012;13:132. doi: 10.1186/1745-6215-13-132.
    1. Millar J, Ali M, Pollock A, et al. Standardisation of outcome measures in trials of upper limb rehabilitation after stroke. . Published October, 2014. Accessed 10 Jan 2016.
Included Studies:
    1. A1. Barker RN, Brauer S, Carson R. Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Exp Brain Res 2009;196(4):483–96.
    1. A2. Cauraugh J, Light K, Kim S, et al. Chronic motor dysfunction after stroke: Recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 2000;31(6):1360–64.
    1. A3. Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 2002;33(6):1589–94.
    1. A4. Cauraugh JH, Kim SB. Chronic stroke motor recovery: duration of active neuromuscular stimulation. J Neurol Sci 2003;215(1-2):13–19.
    1. A5. Cauraugh JH, Kim SB. Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. J Neurol Neurosurg Psychiatry. 2003;74(11):1562–66.
    1. A6. Chan MK, Tong RK, Chung KY. Bilateral upper limb training with functional electric stimulation in patients with chronic stroke. Neurorehabil Neural Repair 2009;23(4):357–65.
    1. A7. Duarte E, Marco E, Cervantes C, Dìaz D, Chiarella SC, Escalada F. Efectos de la toxina botulínica tipo A y electroestimulación en la espasticidad flexora distal de la extremidad superior en el ictus. ensayo clínico aleatorizado. Rehabilitacion (Madr). 2011;45(3):194–201.
    1. A8. Francisco G, Chae J, Chawla H, et al. Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: A randomized pilot study. Arch Phys Med Rehabil 1998;79(5):570–75.
    1. A9. Hara Y, Ogawa S, Tsujiuchi K, Muraoka Y. A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation. Disabil Rehabil. 2008;30(4):296–304.
    1. A10. Mangold S, Schuster C, Keller T, et al. Motor training of upper extremity with functional electrical stimulation in early stroke rehabilitation. Neurorehabil Neural Repair 2009;23(2):184–90.
    1. A11. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: A randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–90.
    1. A12. Popovic MB, Popovic DB, Sinkjaer T, et al. Restitution of reaching and grasping promoted by functional electrical therapy. Artif Organs 2002;26(3):271–75.
    1. A13. Popovic MB, Popovic DB, Sinkjaer T, et al. Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J Rehabil Res Dev 2003;40(5):443–53.
    1. A14. Shimodozono M, Noma T, Matsumoto S, et al. Repetitive facilitative exercise under continuous electrical stimulation for severe arm impairment after sub-acute stroke: A randomized controlled pilot study. Brain Inj 2014;28(2):203–10.
    1. A15. Shin HK, Cho SH, Jeon HS, et al. Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients. Neurosci Lett 2008;442(3):174–79.
    1. A16. Shindo K, Fujiwara T, Hara J, et al. Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: A randomized controlled pilot trial. Neurorehabil Neural Repair 2011;25(9):830–37.
    1. A17. Tarkka IM, Pitkanen K, Popovic DB, et al. Functional electrical therapy for hemiparesis alleviates disability and enhances neuroplasticity. Tohoku J Exp Med 2011;225(1):71–6.
    1. A18. Thorsen R, Cortesi M, Jonsdottir J, et al. Myoelectrically driven functional electrical stimulation may increase motor recovery of upper limb in poststroke subjects: A randomized controlled pilot study. J Rehabil Res Dev 2013;50(6):785–94.
    1. A19. Thrasher TA, Zivanovic V, McIlroy W, et al. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil Neural Repair 2008;22(6):706–14.
    1. A20. Yun GJ, Chun M, Parl JY, et al. The synergic effects of mirror therapy and neuromuscular electrical stimulation for hand function in stroke patients. Ann Rehabil Med 2011;35:316–21.

Source: PubMed

3
Abonner