Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis

Hemant K Mishra, Jing Ma, Bruce Walcheck, Hemant K Mishra, Jing Ma, Bruce Walcheck

Abstract

Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.

Keywords: adhesion; bacteria; infection; inflammation; leukocyte.

Figures

Figure 1
Figure 1
(A) Circulating neutrophils attach to and transmigrate through the vascular endothelium in a step-wise process. Neutrophils accumulate on the vascular endothelium by direct (1°) and indirect (2°) manners, roll and scan the endothelial cells for chemokines, which promotes stable tethers and eventual transmigration into the underlying tissue. Various neutrophil and endothelial cell adhesion molecules and receptors directly involved in this process (represented by black dots) are listed in the figure, and those that are ADAM17 substrates are indicated in red. (B) Over-activation of ADAM17 by inflammatory stimuli during sepsis may result in excessive ectodomain shedding by neutrophils and endothelial cells that in turn impairs neutrophil recruitment and bacterial (green rods) clearance.
Figure 2
Figure 2
Illustration of the domain structure of the human ADAM family members. Each domain is indicated by a letter. Metalloproteinase (M), disintegrin-like (D), cysteine-rich (C), and epidermal growth factor (E). Additional regions of functional relevance discussed in the text are indicated in the key.

References

    1. Adrain C., Zettl M., Christova Y., Taylor N., Freeman M. (2012). Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 335, 225–228. 10.1126/science.1214400
    1. Alexander S. R., Kishimoto T. K., Walcheck B. (2000). Effects of selective protein kinase C inhibitors on the proteolytic down-regulation of L-selectin from chemoattractant-activated neutrophils. J. Leukoc. Biol. 67, 415–422.
    1. Alves-Filho J. C., Freitas A., Souto F. O., Spiller F., Paula-Neto H., Silva J. S., et al. . (2009). Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. U.S.A. 106, 4018–4023. 10.1073/pnas.0900196106
    1. Alves-Filho J. C., Sônego F., Souto F. O., Freitas A., Verri W. A., Jr., Auxiliadora-Martins M., et al. . (2010a). Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16, 708–712. 10.1038/nm.2156
    1. Alves-Filho J. C., Spiller F., Cunha F. Q. (2010b). Neutrophil paralysis in sepsis. Shock 34(Suppl. 1), 15–21. 10.1097/SHK.0b013e3181e7e61b
    1. Amour A., Slocombe P. M., Webster A., Butler M., Knight C. G., Smith B. J., et al. . (1998). TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 39–44. 10.1016/S0014-5793(98)01031-X
    1. Arndt P. G., Strahan B., Wang Y., Long C., Horiuchi K., Walcheck B. (2011). Leukocyte ADAM17 regulates acute pulmonary inflammation. PLoS ONE 6:e19938. 10.1371/journal.pone.0019938
    1. Bargatze R. F., Kurk S., Butcher E. C., Jutila M. A. (1994). Neutrophils roll on adherent neutrophils bound to cytokine-induced endothelial cells via L-selectin on the rolling cells. J. Exp. Med. 180, 1785–1792. 10.1084/jem.180.5.1785
    1. Bell J. H., Herrera A. H., Li Y., Walcheck B. (2007). Role of ADAM17 in the ectodomain shedding of TNF-alpha and its receptors by neutrophils and macrophages. J. Leukoc. Biol. 82, 173–176. 10.1189/jlb.0307193
    1. Bennett T. A., Edwards B. S., Sklar L. A., Rogelj S. (2000). Sulfhydryl regulation of L-selectin shedding: phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes. J. Immunol. 164, 4120–4129. 10.4049/jimmunol.164.8.4120
    1. Bergmeier W., Piffath C. L., Cheng G., Dole V. S., Zhang Y., Von Andrian U. H., et al. . (2004). Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ. Res. 95, 677–683. 10.1161/01.RES.0000143899.73453.11
    1. Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., et al. . (1997). A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729–733. 10.1038/385729a0
    1. Blaydon D. C., Biancheri P., Di W. L., Plagnol V., Cabral R. M., Brooke M. A., et al. . (2011). Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 365, 1502–1508. 10.1056/NEJMoa1100721
    1. Brandl K., Sun L., Neppl C., Siggs O. M., Le Gall S. M., Tomisato W., et al. . (2010). MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands. Proc. Natl. Acad. Sci. U.S.A. 107, 19967–19972. 10.1073/pnas.1014669107
    1. Brill A., Chauhan A. K., Canault M., Walsh M. T., Bergmeier W., Wagner D. D. (2009). Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc. Res. 84, 137–144. 10.1093/cvr/cvp176
    1. Brown K. A., Brain S. D., Pearson J. D., Edgeworth J. D., Lewis S. M., Treacher D. F. (2006). Neutrophils in development of multiple organ failure in sepsis. Lancet 368, 157–169. 10.1016/S0140-6736(06)69005-3
    1. Cacalano G., Lee J., Kikly K., Ryan A. M., Pitts-Meek S., Hultgren B., et al. . (1994). Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684. 10.1126/science.8036519
    1. Caescu C. I., Jeschke G. R., Turk B. E. (2009). Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem. J. 424, 79–88. 10.1042/BJ20090549
    1. Chalaris A., Adam N., Sina C., Rosenstiel P., Lehmann-Koch J., Schirmacher P., et al. . (2010). Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J. Exp. Med. 207, 1617–1624. 10.1084/jem.20092366
    1. Chalaris A., Rabe B., Paliga K., Lange H., Laskay T., Fielding C. A., et al. . (2007). Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 110, 1748–1755. 10.1182/blood-2007-01-067918
    1. Christova Y., Adrain C., Bambrough P., Ibrahim A., Freeman M. (2013). Mammalian iRhoms have distinct physiological functions including an essential role in TACE regulation. EMBO Rep. 14, 884–890. 10.1038/embor.2013.128
    1. Cohen J., Vincent J. L., Adhikari N. K. J., Machado F. R., Angus D. C., Calandra T., et al. . (2015). Sepsis: a roadmap for future research. Lancet Infect. Dis. 15, 581–614. 10.1016/S1473-3099(15)70112-X
    1. Cowley H. C., Heney D., Gearing A. J., Hemingway I., Webster N. R. (1994). Increased circulating adhesion molecule concentrations in patients with the systemic inflammatory response syndrome: a prospective cohort study. Crit. Care Med. 22, 651–657. 10.1097/00003246-199404000-00022
    1. Dellinger R. P., Vincent J. L. (2005). The surviving sepsis campaign sepsis change bundles and clinical practice. Crit. Care 9, 653–654. 10.1186/cc3952
    1. Díaz-Rodríguez E., Montero J. C., Esparís-Ogando A., Yuste L., Pandiella A. (2002). Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. Mol. Biol. Cell 13, 2031–2044. 10.1091/mbc.01-11-0561
    1. Doedens J. R., Black R. A. (2000). Stimulation-induced down-regulation of tumor necrosis factor-alpha converting enzyme. J. Biol. Chem. 275, 14598–14607. 10.1074/jbc.275.19.14598
    1. Doedens J. R., Mahimkar R. M., Black R. A. (2003). TACE/ADAM-17 enzymatic activity is increased in response to cellular stimulation. Biochem. Biophys. Res. Commun. 308, 331–338. 10.1016/S0006-291X(03)01381-0
    1. Doroshenko T., Chaly Y., Savitskiy V., Maslakova O., Portyanko A., Gorudko I., et al. . (2002). Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood 100, 2668–2671. 10.1182/blood.100.7.2668
    1. Dreymueller D., Martin C., Kogel T., Pruessmeyer J., Hess F. M., Horiuchi K., et al. . (2012). Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. EMBO Mol. Med. 4, 412–423. 10.1002/emmm.201200217
    1. Duffy M. J., Mullooly M., O'donovan N., Sukor S., Crown J., Pierce A., et al. . (2011). The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin. Proteomics 8:9. 10.1186/1559-0275-8-9
    1. Düsterhöft S., Jung S., Hung C. W., Tholey A., Sonnichsen F. D., Grötzinger J., et al. . (2013). Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J. Am. Chem. Soc. 135, 5776–5781. 10.1021/ja400340u
    1. Edwards D. R., Handsley M. M., Pennington C. J. (2008). The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–289. 10.1016/j.mam.2008.08.001
    1. Ertel W., Scholl F. A., Gallati H., Bonaccio M., Schildberg F. W., Trentz O. (1994). Increased release of soluble tumor necrosis factor receptors into blood during clinical sepsis. Arch. Surg. 129, 1330–1336; discussion 1336–1337. 10.1001/archsurg.1994.01420360120017
    1. Fan H., Derynck R. (1999). Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades. EMBO J. 18, 6962–6972. 10.1093/emboj/18.24.6962
    1. Friedman S., Levy R., Garrett W., Doval D., Bondarde S., Sahoo T., et al. (2009). Clinical benefit of INCB7839, a potent and selective inhibitor of ADAM10 and ADAM17, in combination with trastuzumab in metastatic HER2 positive breast cancer patients. Cancer Res. 69:5056 10.1158/0008-5472.SABCS-09-5056
    1. Galon J., Moldovan I., Galinha A., Provost-Marloie M. A., Kaudewitz H., Roman-Roman S., et al. . (1998). Identification of the cleavage site involved in production of plasma soluble Fc gamma receptor type III (CD16). Eur. J. Immunol. 28, 2101–2107. 10.1002/(SICI)1521-4141(199807)28:07<2101::AID-IMMU2101>;;2-W
    1. Garton K. J., Gough P. J., Philalay J., Wille P. T., Blobel C. P., Whitehead R. H., et al. . (2003). Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J. Biol. Chem. 278, 37459–37464. 10.1074/jbc.M305877200
    1. Gearing A. J., Newman W. (1993). Circulating adhesion molecules in disease. Immunol. Today 14, 506–512. 10.1016/0167-5699(93)90267-O
    1. Gechtman Z., Alonso J. L., Raab G., Ingber D. E., Klagsbrun M. (1999). The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol. Chem. 274, 28828–28835. 10.1074/jbc.274.40.28828
    1. Goncalves A. S., Appelberg R. (2002). The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand. J. Immunol. 55, 585–591. 10.1046/j.1365-3083.2002.01097.x
    1. Gonzales P. E., Solomon A., Miller A. B., Leesnitzer M. A., Sagi I., Milla M. E. (2004). Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. J. Biol. Chem. 279, 31638–31645. 10.1074/jbc.M401311200
    1. Gooz M. (2010). ADAM-17: the enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 45, 146–169. 10.3109/10409231003628015
    1. Gotts J. E., Matthay M. A. (2016). Sepsis: pathophysiology and clinical management. BMJ 353:i1585. 10.1136/bmj.i1585
    1. Hartmann M., Herrlich A., Herrlich P. (2013). Who decides when to cleave an ectodomain? Trends Biochem. Sci. 38, 111–120. 10.1016/j.tibs.2012.12.002
    1. Hassemer E. L., Le Gall S. M., Liegel R., Mcnally M., Chang B., Zeiss C. J., et al. . (2010). The waved with open eyelids (woe) locus is a hypomorphic mouse mutation in Adam17. Genetics 185, 245–255. 10.1534/genetics.109.113167
    1. Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y., et al. . (2007a). Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 179, 2686–2689. 10.4049/jimmunol.179.5.2686
    1. Horiuchi K., Le Gall S., Schulte M., Yamaguchi T., Reiss K., Murphy G., et al. . (2007b). Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol. Biol. Cell 18, 176–188. 10.1091/mbc.E06-01-0014
    1. Issuree P. D., Maretzky T., Mcilwain D. R., Monette S., Qing X., Lang P. A., et al. . (2013). iRHOM2 is a critical pathogenic mediator of inflammatory arthritis. J. Clin. Invest. 123, 928–932. 10.1172/jci66168
    1. Jing Y., Ni Z., Wu J., Higgins L., Markowski T. W., Kaufman D. S., et al. . (2015). Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS ONE 10:e0121788. 10.1371/journal.pone.0121788
    1. Jones J. C., Rustagi S., Dempsey P. J. (2016). ADAM Proteases and gastrointestinal function. Annu. Rev. Physiol. 78, 243–276. 10.1146/annurev-physiol-021014-071720
    1. Kermarrec N., Selloum S., Plantefeve G., Chosidow D., Paoletti X., Lopez A., et al. . (2005). Regulation of peritoneal and systemic neutrophil-derived tumor necrosis factor-alpha release in patients with severe peritonitis: role of tumor necrosis factor-alpha converting enzyme cleavage. Crit. Care Med. 33, 1359–1364. 10.1097/01.CCM.0000166359.47577.57
    1. Khandaker M. H., Mitchell G., Xu L., Andrews J. D., Singh R., Leung H., et al. . (1999). Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Blood 93, 2173–2185.
    1. Khandaker M. H., Xu L., Rahimpour R., Mitchell G., Devries M. E., Pickering J. G., et al. . (1998). CXCR1 and CXCR2 are rapidly down-modulated by bacterial endotoxin through a unique agonist-independent, tyrosine kinase-dependent mechanism. J. Immunol. 161, 1930–1938.
    1. Khokha R., Murthy A., Weiss A. (2013). Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol. 13, 649–665. 10.1038/nri3499
    1. Kishimoto T. K., Jutila M. A., Berg E. L., Butcher E. C. (1989). Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 245, 1238–1241. 10.1126/science.2551036
    1. Kishimoto T. K., Kahn J., Migaki G., Mainolfi E., Shirley F., Ingraham R., et al. . (1995). Regulation of L-selectin expression by membrane proximal proteolysis. Agents Actions Suppl. 47, 121–134. 10.1007/978-3-0348-7343-7_11
    1. Koenen R. R., Pruessmeyer J., Soehnlein O., Fraemohs L., Zernecke A., Schwarz N., et al. . (2009). Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 113, 4799–4809. 10.1182/blood-2008-04-152330
    1. Kolaczkowska E., Kubes P. (2013). Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175. 10.1038/nri3399
    1. Kumar G., Kumar N., Taneja A., Kaleekal T., Tarima S., Mcginley E., et al. . (2011). Nationwide trends of severe sepsis in the 21st century (2000–2007). Chest 140, 1223–1231. 10.1378/chest.11-0352
    1. Lajoie L., Congy-Jolivet N., Bolzec A., Gouilleux-Gruart V., Sicard E., Sung H. C., et al. . (2014). ADAM17-mediated shedding of FcgammaRIIIA on human NK cells: identification of the cleavage site and relationship with activation. J. Immunol. 192, 741–751. 10.4049/jimmunol.1301024
    1. Lämmermann T. (2016). In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J. Leukoc. Biol. 100, 55–63. 10.1189/jlb.1MR0915-403
    1. Le Gall S. M., Bobé P., Reiss K., Horiuchi K., Niu X. D., Lundell D., et al. . (2009). ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol. Biol. Cell 20, 1785–1794. 10.1091/mbc.E08-11-1135
    1. Le Gall S. M., Maretzky T., Issuree P. D., Niu X. D., Reiss K., Saftig P., et al. . (2010). ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J. Cell Sci. 123, 3913–3922. 10.1242/jcs.069997
    1. Lerman Y. V., Kim M. (2015). Neutrophil migration under normal and sepsis conditions. Cardiovasc. Hematol. Disord. Drug Targets 15, 19–28. 10.2174/1871529X15666150108113236
    1. Li N., Boyd K., Dempsey P. J., Vignali D. A. (2007). Non-cell autonomous expression of TNF-alpha-converting enzyme ADAM17 is required for normal lymphocyte development. J. Immunol. 178, 4214–4221. 10.4049/jimmunol.178.7.4214
    1. Li X., Maretzky T., Weskamp G., Monette S., Qing X., Issuree P. D., et al. . (2015). iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling. Proc. Natl. Acad. Sci. U.S.A. 112, 6080–6085. 10.1073/pnas.1505649112
    1. Li Y., Brazzell J., Herrera A., Walcheck B. (2006). ADAM17 deficiency by mature neutrophils has differential effects on L-selectin shedding. Blood 108, 2275–2279. 10.1182/blood-2006-02-005827
    1. Liu V., Escobar G. J., Greene J. D., Soule J., Whippy A., Angus D. C., et al. . (2014). Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312, 90–92. 10.1001/jama.2014.5804
    1. Long C., Hosseinkhani M. R., Wang Y., Sriramarao P., Walcheck B. (2012). ADAM17 activation in circulating neutrophils following bacterial challenge impairs their recruitment. J. Leukoc. Biol. 92, 667–672. 10.1189/jlb.0312112
    1. Long C., Wang Y., Herrera A. H., Horiuchi K., Walcheck B. (2010). In vivo role of leukocyte ADAM17 in the inflammatory and host responses during E. coli-mediated peritonitis. J. Leukoc. Biol. 87, 1097–1101. 10.1189/jlb.1109763
    1. Lorenzen I., Lokau J., Korpys Y., Oldefest M., Flynn C. M., Kunzel U., et al. (2016). Control of ADAM17 activity by regulation of its cellular localisation. Sci. Rep. 6:35067 10.1038/srep35067
    1. Lynam E. B., Rogelj S., Edwards B. S., Sklar L. A. (1996). Enhanced aggregation of human neutrophils by MnCl2 or DTT differentiates the roles of L-selectin and beta 2-integrins. J. Leukoc. Biol. 60, 356–364.
    1. Maretzky T., Mcilwain D. R., Issuree P. D., Li X., Malapeira J., Amin S., et al. . (2013). iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc. Natl. Acad. Sci. U.S.A. 110, 11433–11438. 10.1073/pnas.1302553110
    1. Maskos K., Fernandez-Catalan C., Huber R., Bourenkov G. P., Bartunik H., Ellestad G. A., et al. . (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc. Natl. Acad. Sci. U.S.A. 95, 3408–3412. 10.1073/pnas.95.7.3408
    1. Matthews A. L., Noy P. J., Reyat J. S., Tomlinson M. G. (2016). Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets. [Epub ahead of print]. 10.1080/09537104.2016.1184751
    1. Mayadas T. N., Cullere X., Lowell C. A. (2014). The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218. 10.1146/annurev-pathol-020712-164023
    1. Mcilwain D. R., Lang P. A., Maretzky T., Hamada K., Ohishi K., Maney S. K., et al. . (2012). iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229–232. 10.1126/science.1214448
    1. Mezyk R., Bzowska M., Bereta J. (2003). Structure and functions of tumor necrosis factor-alpha converting enzyme. Acta Biochim. Pol. 50, 625–645.
    1. Mishra H. K., Johnson T. J., Seelig D. M., Walcheck B. (2016). Targeting ADAM17 in leukocytes increases neutrophil recruitment and reduces bacterial spread during polymicrobial sepsis. J. Leukoc. Biol. 100, 999–1004. 10.1189/jlb.3VMAB1115-496RR
    1. Mishra H. K., Long C., Bahaie N. S., Walcheck B. (2015). Regulation of CXCR2 expression and function by a disintegrin and metalloprotease-17 (ADAM17). J. Leukoc. Biol. 97, 447–454. 10.1189/jlb.3HI0714-340R
    1. Moss M. L., Jin S. L., Milla M. E., Bickett D. M., Burkhart W., Carter H. L., et al. . (1997). Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385, 733–736. 10.1038/385733a0
    1. Muller Kobold A. C., Zijlstra J. G., Koene H. R., De Haas M., Kallenberg C. G., Tervaert J. W. (1998). Levels of soluble Fc gammaRIII correlate with disease severity in sepsis. Clin. Exp. Immunol. 114, 220–227. 10.1046/j.1365-2249.1998.00727.x
    1. O'neill S., Robinson A., Deering A., Ryan M., Fitzgerald D. J., Moran N. (2000). The platelet integrin alpha IIbbeta 3 has an endogenous thiol isomerase activity. J. Biol. Chem. 275, 36984–36990. 10.1074/jbc.M003279200
    1. Peschon J. J., Slack J. L., Reddy P., Stocking K. L., Sunnarborg S. W., Lee D. C., et al. . (1998). An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284. 10.1126/science.282.5392.1281
    1. Reddy P., Slack J. L., Davis R., Cerretti D. P., Kozlosky C. J., Blanton R. A., et al. . (2000). Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J. Biol. Chem. 275, 14608–14614. 10.1074/jbc.275.19.14608
    1. Rizoli S. B., Rotstein O. D., Kapus A. (1999). Cell volume-dependent regulation of L-selectin shedding in neutrophils. A role for p38 mitogen-activated protein kinase. J. Biol. Chem. 274, 22072–22080. 10.1074/jbc.274.31.22072
    1. Rosendahl M. S., Ko S. C., Long D. L., Brewer M. T., Rosenzweig B., Hedl E., et al. . (1997). Identification and characterization of a pro-tumor necrosis factor-α-processing enzyme from the ADAM family of zinc metalloproteases. J. Biol. Chem. 272, 24588–24593. 10.1074/jbc.272.39.24588
    1. Sadik C. D., Kim N. D., Luster A. D. (2011). Neutrophils cascading their way to inflammation. Trends Immunol. 32, 452–460. 10.1016/j.it.2011.06.008
    1. Schaff U., Mattila P. E., Simon S. I., Walcheck B. (2008). Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J. Leukoc. Biol. 83, 99–105. 10.1189/jlb.0507304
    1. Scheller J., Chalaris A., Garbers C., Rose-John S. (2011). ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 32, 380–387. 10.1016/j.it.2011.05.005
    1. Schlöndorff J., Becherer J. D., Blobel C. P. (2000). Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). Biochem. J. 347 (Pt 1), 131–138. 10.1042/bj3470131
    1. Schulte W., Bernhagen J., Bucala R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets–an updated view. Mediators Inflamm. 2013:165974. 10.1155/2013/165974
    1. Schwarz J., Broder C., Helmstetter A., Schmidt S., Yan I., Müller M., et al. . (2013). Short-term TNFα shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17. Biochim. Biophys. Acta 1833, 3355–3367. 10.1016/j.bbamcr.2013.10.005
    1. Schwarz J., Schmidt S., Will O., Koudelka T., Köhler K., Boss M., et al. . (2014). Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor alpha ectodomain shedding. J. Biol. Chem. 289, 3080–3093. 10.1074/jbc.M113.536847
    1. Shao Y., He J., Chen F., Cai Y., Zhao J., Lin Y., et al. . (2016). Association study between promoter polymorphisms of ADAM17 and progression of sepsis. Cell. Physiol. Biochem. 39, 1247–1261. 10.1159/000447830
    1. Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810. 10.1001/jama.2016.0287
    1. Smookler D. S., Mohammed F. F., Kassiri Z., Duncan G. S., Mak T. W., Khokha R. (2006). Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J. Immunol. 176, 721–725. 10.4049/jimmunol.176.2.721
    1. Sommer A., Kordowski F., Büch J., Maretzky T., Evers A., Andrä J., et al. . (2016). Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat. Commun. 7:11523. 10.1038/ncomms11523
    1. Sônego F., Alves-Filho J. C., Cunha F. Q. (2014). Targeting neutrophils in sepsis. Expert Rev. Clin. Immunol. 10, 1019–1028. 10.1586/1744666X.2014.922876
    1. Soond S. M., Everson B., Riches D. W., Murphy G. (2005). ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci. 118, 2371–2380. 10.1242/jcs.02357
    1. Sperandio M., Smith M. L., Forlow S. B., Olson T. S., Xia L., Mcever R. P., et al. . (2003). P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197, 1355–1363. 10.1084/jem.20021854
    1. St. Hill C. A., Alexander S. R., Walcheck B. (2003). Indirect capture augments leukocyte accumulation on P-selectin in flowing whole blood. J. Leukoc. Biol. 73, 464–471. 10.1189/jlb.1002491
    1. Stadtmann A., Zarbock A. (2012). CXCR2: From Bench to Bedside. Front. Immunol. 3:263. 10.3389/fimmu.2012.00263
    1. Stawikowska R., Cudic M., Giulianotti M., Houghten R. A., Fields G. B., Minond D. (2013). Activity of ADAM17 (a disintegrin and metalloprotease 17) is regulated by its noncatalytic domains and secondary structure of its substrates. J. Biol. Chem. 288, 22871–22879. 10.1074/jbc.M113.462267
    1. Stillie R., Farooq S. M., Gordon J. R., Stadnyk A. W. (2009). The functional significance behind expressing two IL-8 receptor types on PMN. J. Leukoc. Biol. 86, 529–543. 10.1189/jlb.0208125
    1. Takeda S. (2016). ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins 8:155. 10.3390/toxins8050155
    1. Tang J., Zarbock A., Gomez I., Wilson C. L., Lefort C. T., Stadtmann A., et al. (2011). Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood 118, 786–794. 10.1182/blood-2010-11-321406
    1. Thorp E., Vaisar T., Subramanian M., Mautner L., Blobel C., Tabas I. (2011). Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cdelta, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 286, 33335–33344. 10.1074/jbc.M111.263020
    1. Tsuboi N., Asano K., Lauterbach M., Mayadas T. N. (2008). Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 28, 833–846. 10.1016/j.immuni.2008.04.013
    1. Tsukerman P., Eisenstein E. M., Chavkin M., Schmiedel D., Wong E., Werner M., et al. . (2015). Cytokine secretion and NK cell activity in human ADAM17 deficiency. Oncotarget 6, 44151–44160. 10.18632/oncotarget.6629
    1. Tucher J., Linke D., Koudelka T., Cassidy L., Tredup C., Wichert R., et al. . (2014). LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries. J. Proteome Res. 13, 2205–2214. 10.1021/pr401135u
    1. Walcheck B., Herrera A. H., St. Hill C., Mattila P. E., Whitney A. R., Deleo F. R. (2006). ADAM17 activity during human neutrophil activation and apoptosis. Eur. J. Immunol. 36, 968–976. 10.1002/eji.200535257
    1. Walcheck B., Kahn J., Fisher J. M., Wang B. B., Fisk R. S., Payan D. G., et al. . (1996a). Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380, 720–723. 10.1038/380720a0
    1. Walcheck B., Moore K. L., Mcever R. P., Kishimoto T. K. (1996b). Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J. Clin. Invest. 98, 1081–1087. 10.1172/JCI118888
    1. Walsh G. M., Sheehan D., Kinsella A., Moran N., O'neill S. (2004). Redox modulation of integrin [correction of integin] alpha IIb beta 3 involves a novel allosteric regulation of its thiol isomerase activity. Biochemistry 43, 473–480. 10.1021/bi0354536
    1. Wang Y., Herrera A. H., Li Y., Belani K. K., Walcheck B. (2009). Regulation of mature ADAM17 by redox agents for L-selectin shedding. J. Immunol. 182, 2449–2457. 10.4049/jimmunol.0802770
    1. Wang Y., Robertson J. D., Walcheck B. (2011). Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation. J. Biol. Chem. 286, 38980–38988. 10.1074/jbc.M111.277087
    1. Wang Y., Wu J., Newton R., Bahaie N. S., Long C., Walcheck B. (2013). ADAM17 cleaves CD16b (FcgammaRIIIb) in human neutrophils. Biochim. Biophys. Acta 1833, 680–685. 10.1016/j.bbamcr.2012.11.027
    1. Wang Y., Zhang A. C., Ni Z., Herrera A., Walcheck B. (2010). ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis. J. Immunol. 184, 4447–4454. 10.4049/jimmunol.0902925
    1. Weber S., Saftig P. (2012). Ectodomain shedding and ADAMs in development. Development 139, 3693–3709. 10.1242/dev.076398
    1. Weskamp G., Mendelson K., Swendeman S., Le Gall S., Ma Y., Lyman S., et al. (2010). Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ. Res. 106, 932–940. 10.1161/CIRCRESAHA.109.207415
    1. Willems S. H., Tape C. J., Stanley P. L., Taylor N. A., Mills I. G., Neal D. E., et al. . (2010). Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem. J. 428, 439–450. 10.1042/BJ20100179
    1. Wisniewska M., Goettig P., Maskos K., Belouski E., Winters D., Hecht R., et al. . (2008). Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J. Mol. Biol. 381, 1307–1319. 10.1016/j.jmb.2008.06.088
    1. Xu P., Liu J., Sakaki-Yumoto M., Derynck R. (2012). TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci. Signal. 5:ra34. 10.1126/scisignal.2002689
    1. Xu X. R., Carrim N., Neves M. A., Mckeown T., Stratton T. W., Coelho R. M., et al. . (2016). Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J. 14:29. 10.1186/s12959-016-0100-6
    1. Zhao L., Shey M., Farnsworth M., Dailey M. O. (2001). Regulation of membrane metalloproteolytic cleavage of L-selectin (CD62l) by the epidermal growth factor domain. J. Biol. Chem. 276, 30631–30640. 10.1074/jbc.M103748200
    1. Zhang F., Liu A. L., Gao S., Ma S., Guo S. B. (2016). Neutrophil dysfunction in sepsis. Chinese Med. J. 129:2741. 10.4103/0366-6999.193447
    1. Zonneveld R., Martinelli R., Shapiro N. I., Kuijpers T. W., Plotz F. B., Carman C. V. (2014). Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit. Care 18:204. 10.1186/cc13733

Source: PubMed

3
Abonner