Randomized trial of glucosamine and chondroitin supplementation on inflammation and oxidative stress biomarkers and plasma proteomics profiles in healthy humans

Sandi L Navarro, Emily White, Elizabeth D Kantor, Yuzheng Zhang, Junghyun Rho, Xiaoling Song, Ginger L Milne, Paul D Lampe, Johanna W Lampe, Sandi L Navarro, Emily White, Elizabeth D Kantor, Yuzheng Zhang, Junghyun Rho, Xiaoling Song, Ginger L Milne, Paul D Lampe, Johanna W Lampe

Abstract

Background: Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans.

Methods: We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin.

Results: Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo.

Conclusion: Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer.

Trial registration: ClinicalTrials.gov NCT01682694.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT Flow diagram of participants…
Fig 1. CONSORT Flow diagram of participants in the glucosamine and chondroitin (G&C) randomized, placebo-controlled trial.

References

    1. Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, et al. (2008) Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA 300: 2867–2878. 10.1001/jama.2008.892
    1. Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JW, et al. (2003) EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 62: 1145–1155.
    1. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, et al. (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 16: 137–162. 10.1016/j.joca.2007.12.013
    1. Satia JA, Littman A, Slatore CG, Galanko JA, White E (2009) Associations of herbal and specialty supplements with lung and colorectal cancer risk in the VITamins and Lifestyle study. Cancer Epidemiol Biomarkers Prev 18: 1419–1428. 10.1158/1055-9965.EPI-09-0038
    1. Pocobelli G, Kristal AR, Patterson RE, Potter JD, Lampe JW, et al. (2010) Total mortality risk in relation to use of less-common dietary supplements. Am J Clin Nutr 91: 1791–1800. 10.3945/ajcn.2009.28639
    1. Bell GA, Kantor ED, Lampe JW, Shen DD, White E (2012) Use of glucosamine and chondroitin in relation to mortality. Eur J Epidemiol 27: 593–603. 10.1007/s10654-012-9714-6
    1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860–867.
    1. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391: 499–510.
    1. Tudek B, Speina E (2012) Oxidatively damaged DNA and its repair in colon carcinogenesis. Mutat Res 736: 82–92. 10.1016/j.mrfmmm.2012.04.003
    1. Iovu M, Dumais G, du Souich P (2008) Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 16 Suppl 3: S14–18. 10.1016/j.joca.2008.06.008
    1. Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, et al. (2003) Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11: 290–298.
    1. Chan PS, Caron JP, Orth MW (2006) Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate. J Rheumatol 33: 1329–1340.
    1. Bak YK, Lampe JW, Sung MK (2014) Dietary supplementation of glucosamine sulfate attenuates intestinal inflammation in a mouse model of experimental colitis. J Gastroenterol Hepatol 29: 957–963. 10.1111/jgh.12485
    1. Kantor ED, Lampe JW, Vaughan TL, Peters U, Rehm CD, et al. (2012) Association between use of specialty dietary supplements and C-reactive protein concentrations. Am J Epidemiol 176: 1002–1013. 10.1093/aje/kws186
    1. Kantor ED, Ulrich CM, Owen RW, Schmezer P, Neuhouser ML, et al. (2013) Specialty supplement use and biologic measures of oxidative stress and DNA damage. Cancer Epidemiol Biomarkers Prev 22: 2312–2322. 10.1158/1055-9965.EPI-13-0470
    1. Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, et al. (2007) Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab 92: 4569–4574.
    1. Fenkci S, Rota S, Sabir N, Sermez Y, Guclu A, et al. (2006) Relationship of serum interleukin-6 and tumor necrosis factor alpha levels with abdominal fat distribution evaluated by ultrasonography in overweight or obese postmenopausal women. J Investig Med 54: 455–460.
    1. Uwe S (2008) Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks. Biochem Pharmacol 75: 1567–1579.
    1. Aziz N, Fahey JL, Detels R, Butch AW (2003) Analytical performance of a highly sensitive C-reactive protein-based immunoassay and the effects of laboratory variables on levels of protein in blood. Clin Diagn Lab Immunol 10: 652–657.
    1. Navarro SL, Brasky TM, Schwarz Y, Song X, Wang CY, et al. (2012) Reliability of serum biomarkers of inflammation from repeated measures in healthy individuals. Cancer Epidemiol Biomarkers Prev 21: 1167–1170. 10.1158/1055-9965.EPI-12-0110
    1. Fitzgerald DW, Bezak K, Ocheretina O, Riviere C, Wright TC, et al. (2012) The effect of HIV and HPV coinfection on cervical COX-2 expression and systemic prostaglandin E2 levels. Cancer Prev Res (Phila) 5: 34–40. 10.1158/1940-6207.CAPR-11-0496
    1. Milne GL, Gao B, Terry ES, Zackert WE, Sanchez SC (2013) Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radic Biol Med 59: 36–44. 10.1016/j.freeradbiomed.2012.09.030
    1. Loch CM, Ramirez AB, Liu Y, Sather CL, Delrow JJ, et al. (2007) Use of high density antibody arrays to validate and discover cancer serum biomarkers. Mol Oncol 1: 313–320. 10.1016/j.molonc.2007.08.004
    1. Rho JH, Lampe PD (2013) High-throughput screening for native autoantigen-autoantibody complexes using antibody microarrays. J Proteome Res 12: 2311–2320. 10.1021/pr4001674
    1. Ramirez AB, Loch CM, Zhang Y, Liu Y, Wang X, et al. (2010) Use of a single-chain antibody library for ovarian cancer biomarker discovery. Mol Cell Proteomics 9: 1449–1460. 10.1074/mcp.M900496-MCP200
    1. Li CI, Mirus JE, Zhang Y, Ramirez AB, Ladd JJ, et al. (2012) Discovery and preliminary confirmation of novel early detection biomarkers for triple-negative breast cancer using preclinical plasma samples from the Women’s Health Initiative observational study. Breast Cancer Res Treat 135: 611–618. 10.1007/s10549-012-2204-4
    1. Ramirez AB, Lampe PD (2010) Discovery and validation of ovarian cancer biomarkers utilizing high density antibody microarrays. Cancer Biomark 8: 293–307. 10.3233/CBM-2011-0215
    1. Smyth GK (2005) Limma: linear models for microarray data In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber I.W, editor. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer; pp. 397–420.
    1. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31: 265–273.
    1. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, et al. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42: D199–205. 10.1093/nar/gkt1076
    1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
    1. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.
    1. Largo R, Martinez-Calatrava MJ, Sanchez-Pernaute O, Marcos ME, Moreno-Rubio J, et al. (2009) Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis. Am J Physiol Heart Circ Physiol 297: H268–276. 10.1152/ajpheart.00142.2009
    1. Azuma K, Osaki T, Wakuda T, Tsuka T, Imagawa T, et al. (2012) Suppressive effects of N-acetyl-D-glucosamine on rheumatoid arthritis mouse models. Inflammation 35: 1462–1465. 10.1007/s10753-012-9459-0
    1. Yomogida S, Kojima Y, Tsutsumi-Ishii Y, Hua J, Sakamoto K, et al. (2008) Glucosamine, a naturally occurring amino monosaccharide, suppresses dextran sulfate sodium-induced colitis in rats. Int J Mol Med 22: 317–323.
    1. Beauchemin N, Arabzadeh A (2013) Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32: 643–671. 10.1007/s10555-013-9444-6
    1. Kantor ED, Lampe JW, Navarro SL, Song X, Milne GL, et al. (2014) Associations between glucosamine and chondroitin supplement use and biomarkers of systemic inflammation. J Altern Complement Med 20: 479–485. 10.1089/acm.2013.0323
    1. Yin H, Gao L, Tai HH, Murphey LJ, Porter NA, et al. (2007) Urinary prostaglandin F2alpha is generated from the isoprostane pathway and not the cyclooxygenase in humans. J Biol Chem 282: 329–336.
    1. Nakamura H, Nishioka K (2002) Effects of glucosamine/chondroitin supplement on osteoarthritis: Involvement of PGE2 and YKL-40. J Rheumatism Joint Surgery 21: 175–184.
    1. Nakamura H, Masuko K, Yudoh K, Kato T, Kamada T, et al. (2007) Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int 27: 213–218.
    1. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117: 1281–1283.
    1. Cerutti A, Rescigno M (2008) The biology of intestinal immunoglobulin A responses. Immunity 28: 740–750. 10.1016/j.immuni.2008.05.001
    1. Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6: 323–344. 10.1146/annurev-pathol-011110-130224
    1. Kroeze WK, Sheffler DJ, Roth BL (2003) G-protein-coupled receptors at a glance. J Cell Sci 116: 4867–4869.
    1. Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13: 275–284. 10.1158/1535-7163.MCT-13-0791
    1. Alberti C (2009) Cytoskeleton structure and dynamic behaviour: quick excursus from basic molecular mechanisms to some implications in cancer chemotherapy. Eur Rev Med Pharmacol Sci 13: 13–21.
    1. Jordan MA, Wilson L (1998) Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 10: 123–130.
    1. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, et al. (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3: 311–326.
    1. Zhang Q, Menon R, Deutsch EW, Pitteri SJ, Faca VM, et al. (2008) A mouse plasma peptide atlas as a resource for disease proteomics. Genome Biol 9: R93 10.1186/gb-2008-9-6-r93
    1. Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15: 57–67.
    1. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23: 4061–4071.

Source: PubMed

3
Abonner