ALS and oxidative stress: the neurovascular scenario

Akshay Anand, Keshav Thakur, Pawan Kumar Gupta, Akshay Anand, Keshav Thakur, Pawan Kumar Gupta

Abstract

Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS.

Figures

Figure 1
Figure 1
The role of hypoxia in stimulating the VEGF through an activation of HIF-1 alpha element. HIF-1 alpha gets activated in deficiency of oxygen in mitochondria leading to creation of oxidative stress. This involves the formation of reactive oxygen species which on reaction with free nitrogen forms NO ultimately leading to reactive nitrogen species (RNS). This RNS further activates NF-κB pathway which ultimately leads to activation of HIF-1 alpha factor. The activated form of HIF-1 alpha further leads to VEGF activation thus leading to angiogenesis.
Figure 2
Figure 2
Role of hypoperfusion in elevation of oxidative stress and energy failure. As hypoperfusion reduces blood flow towards cells resulting in reduced ferritin Fe3+ protein, it releases unbound iron Fe2+ molecules resulting in formation of ROS thus increasing the oxidative stress. Hypoperfusion also leads to unavailability of glucose to brain cells thus leading to energy failure.
Figure 3
Figure 3
Hypoxia induced mobilisation of astrocytes. Astrogliosis is the result of aggressive increase of astrocytes number in the vicinity of damaged neuron cell. Synapse formation is hampered when there is neuronal damage thus leading to breakdown of Na+K+ homeostasis. This K+ concentration is detected by the astrocytes.
Figure 4
Figure 4
VEGF and permeability of blood brain barrier. Astrocytic expression of HIF-alpha and VEGFA leads to downregulation of claudins CLN-5 and their regulatory protein OCLN. VEGFA, by the virtue of tyrosine phosphorylation, downregulates the expression of CLN ultimately resulting in disruption of permeability barrier. VEGF induces the migration among the endothelial cells and increases the permeability to CNS.

References

    1. James JM, Gewolb C, Bautch VL. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development. 2009;136(5):833–841.
    1. Bautch VL, James JM. Neurovascular development: the beginning of a beautiful friendship. Cell Adhesion and Migration. 2009;3(2):199–204.
    1. McCarty JH. Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adhesion and Migration. 2009;3(2):211–215.
    1. Lambrechts D, Carmeliet P. VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochimica et Biophysica Acta. 2006;1762(11-12):1109–1121.
    1. Dugdale DC, Hoch DB, Zieve D. Amyotrophic Lateral Sclerosis. A.D.A.M. Medical Encyclopedia; 2010.
    1. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics. 2001;28(2):131–138.
    1. Mills KR. Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome. Brain. 2010;133(11):3458–3469.
    1. Román GC. Neuroepidemiology of amyotrophic lateral sclerosis: clues to aetiology and pathogenesis. Journal of Neurology Neurosurgery and Psychiatry. 1996;61(2):131–137.
    1. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.
    1. Cox LE, Ferraiuolo L, Goodall EF, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS) PLoS ONE. 2010;5(3, article e9872)
    1. Chance PF, Rabin BA, Ryan SG, et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. The American Journal of Human Genetics. 1998;62(3):633–640.
    1. Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4) The American Journal of Human Genetics. 2004;74(6):1128–1135.
    1. Nishimura AL, Mitne-Neto M, Silva HCA, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. The American Journal of Human Genetics. 2004;75(5):822–831.
    1. Puls I, Jonnakuty C, LaMonte BH, et al. Mutant dynactin in motor neuron disease. Nature Genetics. 2003;33(4):455–456.
    1. Fernández-Santiago R, Hoenig S, Lichtner P, et al. Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. Journal of Neurology. 2009;256(8):1337–1342.
    1. Cronin S, Greenway MJ, Ennis S, et al. Elevated serum angiogenin levels in ALS. Neurology. 2006;67(10):1833–1836.
    1. Kishimoto K, Yoshida S, Ibaragi S, et al. Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer. Oral Oncology. 2012;48(11):1120–1127.
    1. Lambrechts D, Lafuste P, Carmeliet P, Conway EM. Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends in Molecular Medicine. 2006;12(8):345–347.
    1. Barbeito LH, Pehar M, Cassina P, et al. A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Research Reviews. 2004;47(1–3):263–274.
    1. Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Annals of Neurology. 1987;22(5):575–579.
    1. Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301, article 5634:839–842.
    1. Niebroj-Dobosz I, Jamrozik Z, Janik P, Hausmanowa-Petrusewicz I, Kwieciński H. Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients. Acta Neurologica Scandinavica. 1999;100(4):238–243.
    1. Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW. Occurrence of β-methylamino-L-alanine (BMAA) in. ALS/PDC patients from Guam. Acta Neurologica Scandinavica. 2004;110(4):267–269.
    1. Shaw PJ, Eggett CJ. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neurology. 2000;247(supplement 1):I17–I27.
    1. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England Journal of Medicine. 1994;330(9):585–591.
    1. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. The Lancet. 1996;347(9013):1425–1431.
    1. Yoo MH, Hyun HJ, Koh JY, Yoon YH. Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo . Investigative Ophthalmology and Visual Science. 2005;46(12):4780–4787.
    1. Obrenovitch TP. Amyotrophic lateral sclerosis, excitotoxicity and riluzole. Trends in Pharmacological Sciences. 1998;19(1):9–11.
    1. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science. 2005;109(3):227–241.
    1. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature. 1995;376(6535):62–66.
    1. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(16):9349–9354.
    1. Fujisawa H. Roles of neuropilinneuropilin and plexin in the development of nervous system. Tanpakushitsu kakusan koso. 1997;42(3, supplement 1):584–588.
    1. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends in Cardiovascular Medicine. 2002;12(1):13–19.
    1. Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology. 2006;7(5):359–371.
    1. Raab S, Plate KH. Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathologica. 2007;113(6):607–626.
    1. Lennmyr F, Ata KA, Funa K, Olsson Y, Terént A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. Journal of Neuropathology and Experimental Neurology. 1998;57(9):874–882.
    1. Yang X, Cepko CL. Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells. Journal of Neuroscience. 1996;16(19):6089–6099.
    1. Iłzecka J. Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clinical Neurology and Neurosurgery. 2004;106(4):289–293.
    1. McCloskey DP, Hintz TM, Scharfman HE. Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Research Bulletin. 2008;76(1-2):36–44.
    1. Bogaert E, van Damme P, Poesen K, et al. VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiology of Aging. 2010;31(12):2185–2191.
    1. Devos D, Moreau C, Lassalle P, et al. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology. 2004;62(11):2127–2129.
    1. Moreau C, Devos D, Brunaud-Danel V, et al. Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS. Journal of Neurology, Neurosurgery and Psychiatry. 2006;77(2):255–257.
    1. Nagata T, Nagano I, Shiote M, et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurological Research. 2007;29(8):772–776.
    1. Suzuki M, Watanabe T, Mikami H, et al. Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 2009;285(1-2):125–129.
    1. Gupta PK, Prabhakar S, Abburi C, Sharma NK, Anand A. Vascular endothelial growth factor-A and chemokine ligand (CCL2) genes are upregulated in peripheral blood mononuclear cells in Indian amyotrophic lateral sclerosis patients. Journal of Neuroinflammation. 2011;8, article 114
    1. Gupta PK, Prabhakar S, Sharma S, Anand A. Vascular endothelial growth factor-A (VEGF-A) and chemokine ligand-2 (CCL2) in amyotrophic lateral sclerosis (ALS) patients. Journal of Neuroinflammation. 2011;8, article 97
    1. Gupta PK, Prabhakar S, Sharma S, Anand A. A predictive model for amyotrophic lateral sclerosis (ALS) diagnosis. Journal of the Neurological Sciences. 2012;312(1-2):68–72.
    1. Nalini A, Thennarasu K, Gourie-Devi M, Shenoy S, Kulshreshtha D. Clinical characteristics and survival pattern of 1,153 patients with amyotrophic lateral sclerosis: experience over 30 years from India. Journal of the Neurological Sciences. 2008;272(1-2):60–70.
    1. Bradley WG. Commentary on Professor Stephen Hawking's disability advice. Annals of Neurosciences. 2009;16:101–102.
    1. Anand A, Gupta PK, Sharma NK, Prabhakar S. Soluble VEGFR1 (sVEGFR1) as a novel marker of amyotrophic lateral sclerosis (ALS) in the North Indian ALS patients. The European Journal of Neurology. 2012;19(5):788–792.
    1. Skene JHP, Cleveland DW. Hypoxia and lou gehrig. Nature Genetics. 2001;28(2):107–108.
    1. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays. 2004;26(9):943–954.
    1. Aliev G, Smith MA, Obrenovich ME, de la Torre JC, Perry G. Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Alzheimer disease. Neurotoxicity Research. 2003;5(7):491–504.
    1. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM. Ferritin and the response to oxidative stress. Biochemical Journal. 2001;357(1):241–247.
    1. Harned J, Ferrell J, Lall MM, et al. Altered ferritin subunit composition: change in iron metabolism in lens epithelial cells and downstream effects on glutathione levels and VEGF secretion. Investigative Ophthalmology and Visual Science. 2010;51(9):4437–4446.
    1. Henkel JS, Engelhardt JI, Siklós SL, et al. Presence of dendritic cells, MCP-1, and activated Microglia/Macrophages in amyotrophic Lateral sclerosis spinal cord tissue. Annals of Neurology. 2004;55(2):221–235.
    1. Maihöfner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundörfer B, Heuss D. Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. The European Journal of Neuroscience. 2003;18(6):1527–1534.
    1. Spliet WGM, Aronica E, Ramkema M, Aten J, Troost D. Increased expression of connective tissue growth factor in amyotrophic lateral sclerosis human spinal cord. Acta Neuropathologica. 2003;106(5):449–457.
    1. Spliet WGM, Aronica E, Ramkema M, et al. Immunohistochemical localization of vascular endothelial growth factor receptors-1, -2 and -3 in human spinal cord: altered expression in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology. 2004;30(4):351–359.
    1. Malessa S, Leigh PN, Bertel O, Sluga E, Hornykiewicz O. Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. Journal of Neurology Neurosurgery and Psychiatry. 1991;54(11):984–988.
    1. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences. 2009;32(12):638–647.
    1. Barres BA. The mystery and magic of Glia: a perspective on their roles in health and disease. Neuron. 2008;60(3):430–440.
    1. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–407.
    1. Martineau M, Baux G, Mothet J-P. Gliotransmission at central glutamatergic synapses: D-serine on stage. Journal of Physiology. 2006;1:211–217.
    1. Zhang Q, Haydon PG. Roles for gliotransmission in the nervous system. Journal of Neural Transmission. 2005;112(1):121–125.
    1. Li P, Zhuo M. Cholinergic, noradrenergic, and serotonergic inhibition of fast synaptic transmission in spinal lumbar dorsal horn of rat. Brain Research Bulletin. 2001;54(6):639–647.
    1. Karpati G, Klassen G, Tanser P. The effects of partial chronic denervation on forearm metabolism. Canadian Journal of Neurological Sciences. 1979;6(2):105–112.
    1. Rissanen TT, Vajanto I, Hiltunen MO, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Fik-1) in ischemic skeletal muscle and its regeneration. The American Journal of Pathology. 2002;160(4):1393–1403.
    1. Nygren I, Larsson A, Johansson A, Askmark H. VEGF is increased in serum but not in spinal cord from patients with amyotrophic lateral sclerosis. NeuroReport. 2002;13(17):2199–2201.
    1. Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Subramaniam JR, Nalini A, Raju TR. Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Research. 2009;1263:122–133.
    1. Crugnola V, Lamperti C, Lucchini V, et al. Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Archives of Neurology. 2010;67(7):849–854.
    1. Vielhaber S, Kunz D, Winkler K, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain. 2000;123(7):1339–1348.
    1. Krasnianski A, Deschauer M, Neudecker S, et al. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain. 2005;128(8):1870–1876.
    1. Küst BM, Copray JCWM, Brouwer N, Troost D, Boddeke HWGM. Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis. Experimental Neurology. 2002;177(2):419–427.
    1. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health C. 2009;27(2):120–139.
    1. Chen S-K, Hsieh WA, Tsai M-H, et al. Age-associated decrease of oxidative repair enzymes, human 8-oxoguanine DNA glycosylases (hOGG1), in human aging. Journal of Radiation Research. 2003;44(1):31–35.
    1. Coppedè F, Mancuso M, Gerfo AL, et al. Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis. Neuroscience Letters. 2007;420(2):163–168.
    1. Brockington A, Kirby J, Eggitt D, et al. Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis. Neurogenetics. 2005;6(2):101–104.
    1. Gros-Louis F, Laurent S, Lopes AAS, et al. Absence of mutations in the hypoxia response element of VEGF in ALS. Muscle and Nerve. 2003;28(6):774–775.
    1. Chen W, Saeed M, Mao H, et al. Lack of association of VEGF promoter polymorphisms with sporadic ALS. Neurology. 2006;67(3):508–510.
    1. van Vught PWJ, Sutedja NA, Veldink JH, et al. Lack of association between VEGF polymorphisms and ALS in a Dutch population. Neurology. 2005;65(10):1643–1645.
    1. Zhang Y, Zhang H, Fu Y, et al. VEGF C2578A polymorphism does not contribute to amyotrophic lateral sclerosis susceptibility in sporadic Chinese patients. Amyotrophic Lateral Sclerosis. 2006;7(2):119–122.
    1. Lambrechts D, Poesen K, Fernández-Santiago R, et al. Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. Journal of Medical Genetics. 2009;46(12):840–846.
    1. Fernández-Santiago R, Sharma M, Mueller JC, et al. Possible gender-dependent association of vascular endothelial growth factor (VEGF) gene and ALS. Neurology. 2006;66(12):1929–1931.
    1. Oates N, Pamphlett R. An epigenetic analysis of SOD1 and VEGF in ALS. Amyotrophic Lateral Sclerosis. 2007;8(2):83–86.
    1. Brockington A, Wokke B, Nixon H, Hartley JA, Shaw PJ. Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis. BMC Medical Genetics. 2007;8, article 23
    1. Zil'ber LA, Bajdakova ZL, Gardašjan AN, Konovalov NV, Bunina TL, Barabadze EM. Study of the etiology of amyotrophic lateral sclerosis. Bulletin of the World Health Organization. 1963;29(4):449–456.
    1. Smith RA, Balis FM, Ott KH, Elsberry DD, Sherman MR, Saifer MGP. Pharmacokinetics and tolerability of ventricularly administered superoxide dismutase in monkeys and preliminary clinical observations in familial ALS. Journal of the Neurological Sciences. 1995;129(supplement 1):13–18.
    1. Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neuroscience. 2005;8(1):85–92.
    1. Hwang DH, Lee HJ, Park IH, et al. Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Therapy. 2009;16(10):1234–1244.
    1. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genetics. 2003;34(4):383–394.
    1. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. Journal of Clinical Investigation. 2003;111(12):1843–1851.
    1. Zheng C, Nennesmo I, Fadeel B, Henter JI. Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Annals of Neurology. 2004;56(4):564–567.
    1. Widenfalk J, Lipson A, Jubran M, et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience. 2003;120(4):951–960.
    1. Kliem MA, Heeke BL, Franz CK, et al. Intramuscular administration of a VEGF zinc finger transcription factor activator (VEGF-ZFP-TF) improves functional outcomes in SOD1 rats. Amyotrophic Lateral Sclerosis. 2011;12(5):331–339.
    1. Silva DF, Porto DL, Araújo IGA, et al. Endothelium-derived nitric oxide is involved in the hypotensive and vasorelaxant effects induced by discretamine in rats. Pharmazie. 2009;64(5):327–331.
    1. Kobari M, Obara K, Watanabe S, Dembo T, Fukuuchi Y. Local cerebral blood flow in motor neuron disease: correlation with clinical findings. Journal of the Neurological Sciences. 1996;144(1-2):64–69.
    1. Barbeito AG, Martinez-Palma L, Vargas MR, et al. Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiology of Disease. 2010;37(3):574–580.
    1. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature. 2004;429, article 6990:413–417.
    1. Ay I, Francis JW, Brown RH., Jr. VEGF increases blood-brain barrier permeability to Evans blue dye and tetanus toxin fragment C but not adeno-associated virus in ALS mice. Brain Research. 2008;1234:198–205.
    1. Zhong Z, Deane R, Ali Z, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nature Neuroscience. 2008;11(4):420–422.
    1. Silani V, Braga M, Ciammola A, Cardin V, Scarlato G. Motor neurones in culture as a model to study ALS. Journal of Neurology. 2000;247(supplement 1):I28–I36.
    1. Lu L, Zheng L, Viera L, et al. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. Journal of Neuroscience. 2007;27(30):7929–7938.
    1. Scandurro AB, Beckman BS. Common proteins bind mRNAs encoding erythropoietin, tyrosine hydroxylase, and vascular endothelial growth factor. Biochemical and Biophysical Research Communications. 1998;246(2):436–440.
    1. Li B, Xu W, Luo C, Gozal D, Liu R. VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Molecular Brain Research. 2003;111(1-2):155–164.
    1. Lunn JS, Sakowski SA, Kim B, Rosenberg AA, Feldman EL. Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration. Developmental Neurobiology. 2009;69(13):871–884.
    1. During MJ, Cao L. VEGF, a mediator of the effect of experience on hippocampal neurogenesis. Current Alzheimer Research. 2006;3(1):29–33.
    1. Meng H, Zhang Z, Zhang R, et al. Biphasic effects of exogenous VEGF on VEGF expression of adult neural progenitors. Neuroscience Letters. 2006;393(2-3):97–101.
    1. Rizvanov AA, Kiyasov AP, Gaziziov IM, et al. Human umbilical cord blood cells transfected with VEGF and L1CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy. Neurochemistry International. 2008;53(6–8):389–394.
    1. Poesen K, Lambrechts D, van Damme P, et al. Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration. Journal of Neuroscience. 2008;28(42):10451–10459.
    1. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. Journal of Neuroimmune Pharmacology. 2006;1(3):223–236.
    1. Schluesener HJ, Sobel RA, Linington C, Weiner HL. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. Journal of Immunology. 1987;139(12):4016–4021.
    1. Germanò A, Caffo M, Angileri FF, et al. NMDA receptor antagonist felbamate reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. Journal of Neurotrauma. 2007;24(4):732–744.
    1. Graesser D, Solowiej A, Bruckner M, et al. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. Journal of Clinical Investigation. 2002;109(3):383–392.
    1. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Annals of Neurology. 2011;70(2):194–206.
    1. Garbuzova-Davis S, Saporta S, Haller E, et al. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE. 2007;2(11, article e1205)
    1. Wolburg H, Wolburg-Buchholz K, Kraus J, et al. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathologica. 2003;105(6):586–592.
    1. Ambrosini E, Remoli ME, Giacomini E, et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. Journal of Neuropathology and Experimental Neurology. 2005;64(8):706–715.
    1. Argaw AT, Asp L, Zhang J, et al. Astrocyte derived VEGF-A drives blood brain barrier disruption in CNS inflammatory disease. Journal of Clinical Investigation. 2012;122(7):2454–2468.
    1. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W. Vascular endothelial growth factor induces VE-cadherin tyrosine. Journal of Cell Science. 1998;111(13):1853–1865.
    1. Zhang K, Lu J, Mori T, et al. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway. Cardiovascular Research. 2011;89(2):426–435.
    1. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Molecular and Cellular Biology. 2000;20(5):1868–1876.
    1. Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Current Opinion in Genetics and Development. 2008;18(5):426–434.
    1. Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α . Nature. 2008;451, article 7181:1008–1012.
    1. Singh RP, Tyagi AK, Dhanalakshmi S, Agarwal R, Agarwal CN. Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. International Journal of Cancer. 2004;108(5):733–740.
    1. Kaur M, Singh RP, Gu M, Agarwal R, Agarwal C. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clinical Cancer Research. 2006;12(20):6194–6202.
    1. Arii M. Chemopreventive effect of grape seed extract on intestinal carcinogenesis in the APCMin mouse. Proceedings of the American Association for Cancer Research. 1998;39, article 20
    1. Lu J, Zhang K, Chen S, Wen W. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression. Carcinogenesis. 2009;30(4):636–644.
    1. Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placeho-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 2001;2(1):9–18.
    1. Graf M, Ecker D, Horowski R, et al. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. Journal of Neural Transmission. 2005;112(5):649–660.
    1. Orrell RW, Lane RJM, Ross M. A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Amyotrophic Lateral Sclerosis. 2008;9(4):195–211.
    1. Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Medicine. 1999;5(3):347–350.
    1. Groeneveld GJ, Veldink JH, van der Tweel I, et al. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Annals of Neurology. 2003;53(4):437–445.
    1. Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME. Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 2004;5(1):33–39.
    1. Weydt P, Hong S, Witting A, Möller T, Stella N, Kliot M. Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 2005;6(3):182–184.

Source: PubMed

3
Abonner