The Role of Moderate Aerobic Exercise as Determined by Cardiopulmonary Exercise Testing in ALS

Anna Caroline Marques Braga, Anabela Pinto, Susana Pinto, Mamede de Carvalho, Anna Caroline Marques Braga, Anabela Pinto, Susana Pinto, Mamede de Carvalho

Abstract

Introduction: The efficacy of cardiopulmonary exercise testing (CPET) to determining exercise intensity has not been established in Amyotrophic Lateral Sclerosis (ALS). We studied this intervention.

Methods: We included 48 ALS patients randomized in 2 groups: G1 (n = 24), exercise intensity leveled by CPET; G2 (n = 24), standard care limited by fatigue, during 6 months. ALS functional scale (ALSFRS-R) and forced vital capacity (FVC) were performed every 3 months; CPET was done at admission (T1) and 6 months later (T2). We registered oxygen uptake, carbon dioxide output, and ventilation at anaerobic threshold and at peak effort. Primary outcome was functional change. We used parametric statistics for comparisons and multiple regression analyses to identify independent predictors of functional decline.

Results: At T1 both groups were identical, except for higher FVC in G1 (p = 0.02). At T2, ALSFRS-R was higher (p = 0.035) in G1. Gas exchange variables at T2 did not change in G1 but had significant differences in G2 (p < 0.05). Multiregression analyses showed the Spinal ALSFRS-R slope and Intervention group (p < 0.001) as significant predictors of ALSFRS-R at T2.

Conclusion: Aerobic exercise defined by CPET is feasible and can improve functional outcome in ALS. This trial is registered with Clinical trials.gov ID: NCT03326622.

Figures

Figure 1
Figure 1
At the end of study we can identify the main findings between groups. The arrows indicate the direction of the significant differences in G1 when compared with standard care group G2. The VO2 peak in G2 reduced 46% since T1. AECI: aerobic exercise with controlled intensity and NIV: non-invasive ventilation.
Figure 2
Figure 2
Slope of ALSFRS-R total score between T0, T1, and T2 for both groups.
Figure 3
Figure 3
Influence of use of NIV on ALSFRS-R at end of study, Confidence Interval 95% (−3.08–6.04).
Figure 4
Figure 4
VO2 Peak at T1 (p = 0.13, [CI: −0,78–0,11]) and at T2 (p = 0.002, [CI: −0,96–−0,25]).
Figure 5
Figure 5
VO2 at the Anaerobic Threshold, T1 (p = 0.8, [CI 95%: −0,23–0,29]) and T2 (p = 0.02, [CI 95%: −0,70–−0,06]).

References

    1. WHO. World Health Organization-Physical activity Fact Sheet. 2015.
    1. Mahoney D. J., Rodriguez C., Devries M., Yasuda N., Tarnopolsky M. A. Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis. Muscle & Nerve. 2004;29(5):656–662. doi: 10.1002/mus.20004.
    1. Pinto S., Swash M., de Carvalho M. Respiratory exercise in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2012;13(1):33–43. doi: 10.3109/17482968.2011.626052.
    1. Balady G. J., Arena R., Sietsema K., et al. Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American heart association. Circulation. 2010;122(2):191–225. doi: 10.1161/cir.0b013e3181e52e69.
    1. Binder R. K., Wonisch M., Corra U., et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European Journal of Preventive Cardiology. 2008;15(6):726–734. doi: 10.1097/HJR.0b013e328304fed4.
    1. Majmudar S., Wu J., Paganoni S. Rehabilitation in amyotrophic lateral sclerosis: Why it matters. Muscle & Nerve. 2014;50(1):4–13. doi: 10.1002/mus.24202.
    1. Cup E. H., Pieterse A. J., ten Broek-Pastoor J. M., et al. Exercise therapy and other types of physical therapy for patients with neuromuscular diseases: a systematic review. Archives of Physical Medicine and Rehabilitation. 2007;88(11):1452–1464. doi: 10.1016/j.apmr.2007.07.024.
    1. Beal M. F. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Annals of Neurology. 1992;31(2):119–130.
    1. Supplementary Guidance for authors undertaking reviews with the Cochrane Consumers and communication review Group, .
    1. Miller R. G., Jackson C. E., Kasarskis E. J., et al. Practice parameters update:the care of the patient with a myotrophic lateral sclerosis:drug, nutritional and respiratory the rapies (anevidence-basedreview) Neurology. 2009;73
    1. Pinto A., Evangelista T., Carvalho M., Alves M., Sales Luís M. Respiratory assistance with a non-invasive ventilator (Bipap) in MND/ALS patients: Survival rates in a controlled trial. Journal of the Neurological Sciences. 1995;129:19–26. doi: 10.1016/0022-510X(95)00052-4.
    1. Bourke S., Tomlinson M., Williams T., Bullock R., Shaw P., Gibson G. Effects of Non-invasive ventilation on survival and quality of life in pationts with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 2006;5(2):140–147. doi: 10.1080/146608202760834157.
    1. Chetta A., Aiello M., Tzani P. Assessment and monitoring of ventilator function and cough efficacy in patients with amyotrophic lateral sclerosis. Monaldi Archives for Chest Diseases. 2007;67(1):43–52.
    1. Excellence NIfHaC. The use of non-invasive ventilation in the management of motor neurone disease. NICE Clinical Guideline 105. 2010 London, UK.
    1. Cedarbaum J. M., Stambler N., Malta E., et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. Journal of the Neurological Sciences. 1999;169(1-2):13–21. doi: 10.1016/S0022-510X(99)00210-5.
    1. Pinto A., de Carvalho M., Evangelista T., Lopes A., Sales-Luís L. Nocturnal pulse oximetry: a new approach to establish the appropriate time for non-invasive ventilation in ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2003;4(1):31–35. doi: 10.1080/14660820301171.
    1. Andersen P. M., Abrahams S., Borasio G. D., et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (mals)—revised report of an efns task force. European Journal of Neurology. 2012;19
    1. Wasserman K., Hansen J. E., Sue D. Y., et al. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 5th. Philadelphia, PA, USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2012.
    1. American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. American Journal of Respiratory and Critical Care Medicine. 2002;166(4):518–624.
    1. Vucic S., Krishnan A. V., Kiernan M. C. Fatigue and activity dependent changes in axonal excitability in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2007;78(11):1202–1208. doi: 10.1136/jnnp.2006.112078.
    1. Dalbello-Haas V., Florence J. M., Krivickas L. S. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. The Cochrane Database of Systematic Reviews. 2008;(2)
    1. Longstreth W., Nelson L., Koepsell T., Van Belle G. Hypotheses to explain the association between vigorous physical activity and amyotrophic lateral sclerosis. Medical Hypotheses. 1991;34(2):144–148. doi: 10.1016/0306-9877(91)90183-Y.
    1. Anand A., Thakur K., Gupta P. K. ALS and oxidative stress: the neurovascular scenario. Oxidative Medicine and Cellular Longevity. 2013;2013:14. doi: 10.1155/2013/635831.635831
    1. Sanjak M., Paulson D., Sufit R., et al. Physiologic and metabolic response to progressive and prolonged exercise in amyotrophic lateral sclerosis. Neurology. 1987;37(7):1217–1220. doi: 10.1212/WNL.37.7.1217.
    1. Mezzani A., Pisano F., Cavalli A., et al. Reduced exercise capacity in early-stage amyotrophic lateral sclerosis: Role of skeletal muscle. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2012;13(1):87–94. doi: 10.3109/17482968.2011.601463.
    1. Siciliano G., D'Avino C., Corona A. D., et al. Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotrophic Lateral Scler Other Motor Neuron Disord. 2002;3(2):57–62. doi: 10.1080/146608202760196011.
    1. Battista R. A., Foster C., Andrew J., Wright G., Lucia A., Porcari J. P. Physiologic responses during indoor cycling. The Journal of Strength and Conditioning Research. 2008;22(4):1236–1241. doi: 10.1519/JSC.0b013e318173dbc4.
    1. Hill D. W., Rowell A. L. Significance of time to exhaustion during exercise at the velocity associated with VO2max. European Journal of Applied Physiology. 1996;72(4):383–386.
    1. Lunetta C., Lizio A., Sansone V. A., et al. Strictly monitored exercise programs reduce motor deterioration in ALS: preliminary results of a randomized controlled trial. Journal of Neurology. 2016;263(1):52–60. doi: 10.1007/s00415-015-7924-z.
    1. van Wessel T., de Haan A., van der Laarse W. J., Jaspers R. T. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? European Journal of Applied Physiology. 2010;110(4):665–694. doi: 10.1007/s00421-010-1545-0.
    1. Lanfranconi F., Ferri A., Corna G., et al. Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise. Scientific Reports. 2017;7(1) doi: 10.1038/s41598-017-02811-z.
    1. Paganoni S., Cudkowicz M., Berry J. Outcome measures in amyotrophic lateral sclerosis clinical trials. Clinical Investigation. 2014;4(7):605–618. doi: 10.4155/cli.14.52.
    1. Dal Bello-Haas V., Florence J. M. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Systematic Reviews. 2013;(5)
    1. Blizzard C. A., Southam K. A., Dawkins E., et al. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis - vulnerability of lower motor neurons to proximal excitotoxicity. Disease Models & Mechanisms. 2015;8(3):215–224. doi: 10.1242/dmm.018606.
    1. Carilho R., de Carvalho M., Swash M., Pinto S., Pinto A., Costa J. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation. Muscle & Nerve. 2014;49(4):545–550. doi: 10.1002/mus.23955.
    1. Takken T., Groen W. G., Hulzebos E. H., et al. Exercise stress testing in children with metabolic or neuromuscular disorders. International Journal of Pediatrics. 2010;2010:1–6. doi: 10.1155/2010/254829.

Source: PubMed

3
Abonner