Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

Tino Zaehle, Pascale Sandmann, Jeremy D Thorne, Lutz Jäncke, Christoph S Herrmann, Tino Zaehle, Pascale Sandmann, Jeremy D Thorne, Lutz Jäncke, Christoph S Herrmann

Abstract

Background: Transcranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).

Results: Results showed that tDCS modulated WM performance by altering the underlying oscillatory brain activity in a polarity-specific way. We observed an increase in WM performance and amplified oscillatory power in the theta and alpha bands after anodal tDCS whereas cathodal tDCS interfered with WM performance and decreased oscillatory power in the theta and alpha bands under posterior electrode sides.

Conclusions: The present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings.

Figures

Figure 1
Figure 1
Behavioural Data: Plots show performance in the WM task after anodal and cathodal tDCS in relation to preceding sham stimulation as well as the performance of the separate control group. Top: The d' increased more after anodal than after cathodal stimulation with an intermediate effect for the control group, demonstrating a polarity effect of the tDCS-induced behavioural improvement. Bottom: Participants responded generally faster from sham to tDCS measure and pre-to-post measure in the control group for Hits (left) and False Alarms (right), respectively. Asterisks indicate statistical significance (P < 0.05).
Figure 2
Figure 2
Event-related potentials: Grand average event-related potentials (ERPs) are shown for each condition at the occipito-parietal ROI (above) and at channel Pz (below). Topographies of overall grand averages (computed across all participants and conditions) are shown at P1, N1, and P3 latencies.
Figure 3
Figure 3
DC stimulation effect on oscillatory brain activity: Event-related spectral perturbation (ERSP) time-frequency plots are given separately for the two sham conditions (A: sham anodal; D: sham cathodal) preceding the two active stimulation conditions (B: anodal, E: cathodal). Differences between the conditions were computed by subtracting the sham ERSPs from the ERSPs of the active conditions (C: active anodal - sham anodal; F: active cathodal - sham cathodal) and by subtracting the cathodal ERSPs from anodal ERSPs (G: sham anodal - sham cathodal; H: active anodal - active cathodal). Subplot J illustrates the overall contrast between the differences obtained for the anodal and cathodal conditions (subplot C - subplot F) and for the active and sham conditions (subplot G - subplot H). White contours indicate significant differences between the conditions (P < 0.05, corrected for multiple comparisons). Note that the statistical analyses revealed no significant differences between the two sham conditions.
Figure 4
Figure 4
Experimental design. Top: After mounting EEG and tDCS electrodes, the experiment started with a 15-minute Sham-tDCS. For the next 10 minutes, participants performed a letter two-back working memory (WM) task while EEG was recorded. Subsequently, a 15 minute active-tDCS (anodal or cathodal) was applied, followed by a further 10-minute WM task. EEG recording was stopped during the stimulation periods. Each participant performed one anodal and one cathodal tDCS session separated by at least one day. The session order was counterbalanced across participants. An additional control group underwent one experimental session performing the similar WM task twice but without receiving a treatment during the 15 minute break in between. Bottom: Schematic description of the letter two-back working memory task.

References

    1. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimulation. 2008;1:206–223. doi: 10.1016/j.brs.2008.06.004.
    1. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology. 2006;117:1623–1629. doi: 10.1016/j.clinph.2006.04.009.
    1. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology. 2003;114:600–604. doi: 10.1016/S1388-2457(02)00412-1.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology. 2000;527:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology. 2005;568:653–663. doi: 10.1113/jphysiol.2005.088310.
    1. Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced bypolarizing currents. Nature. 1962;196:584–585. doi: 10.1038/196584a0.
    1. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology. 1965;28:166–185.
    1. Ohn SH, Park CI, Yoo WK, Ko MH, Choi KP, Kim GM, Lee YT, Kim YH. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19:43–47. doi: 10.1097/WNR.0b013e3282f2adfd.
    1. Gartside IB. Mechanisms of sustained increases of firing rate of neurons in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature. 1968;220:382–383. doi: 10.1038/220382a0.
    1. Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neuroscience Letters. 1990;116:320–324. doi: 10.1016/0304-3940(90)90094-P.
    1. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Research. 1995;684:206–208. doi: 10.1016/0006-8993(95)00434-R.
    1. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125:2238–2247. doi: 10.1093/brain/awf238.
    1. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29:1573–1578. doi: 10.1038/sj.npp.1300517.
    1. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annual Review of Biomedical Engineering. 2007;9:527–565. doi: 10.1146/annurev.bioeng.9.061206.133100.
    1. Morrell F, Naitoh P. Effect of cortical polarization on a conditioned avoidance response. Experimental Neurology. 1962;6:507–532. doi: 10.1016/0014-4886(62)90075-4.
    1. Yamaguchi K, Hori Y. Long lasting retention of cortical dominant focus in rabbit. Medical Journal of Osaka University. 1975;26:39–50.
    1. Rosen SC, Stamm JS. Transcortical polarization: facilitation of delayed response performance by monkeys. Experimental Neurology. 1972;35:282–289. doi: 10.1016/0014-4886(72)90154-9.
    1. Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Research Reviews. 2007;56:346–361. doi: 10.1016/j.brainresrev.2007.08.001.
    1. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience. 2003;15:619–626. doi: 10.1162/089892903321662994.
    1. Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience. 2008;9:103. doi: 10.1186/1471-2202-9-103.
    1. Antal A, Nitsche MA, Kincses TZ, Kruse W, Hoffmann KP, Paulus W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. The European Journal of Neuroscience. 2004;19:2888–2892. doi: 10.1111/j.1460-9568.2004.03367.x.
    1. Vines BW, Schnider NM, Schlaug G. Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport. 2006;17:1047–1050. doi: 10.1097/01.wnr.0000223396.05070.a2.
    1. Flöel A, Rösser N, Michka O, Knecht S, Breitenstein C. Noninvasive brain stimulation improves language learning. Journal of Cognitive Neuroscience. 2008;20:1415–22.
    1. Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, Provinciali L, Tomaiuolo F, Marangolo P. Transcranial Direct Current Stimulation Improves Word Retrieval in Healthy and Nonfluent Aphasic Subjects. Journal of Cognitive Neuroscience. 2010. in press .
    1. de Vries MH, Barth AC, Maiworm S, Knecht S, Zwitserlood P, Flöel A. Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience. 2010;22:2427–36. doi: 10.1162/jocn.2009.21385.
    1. Elmer S, Burkard M, Renz B, Meyer M, Jancke L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behavioral and Brain Functions. 2009;5:29. doi: 10.1186/1744-9081-5-29.
    1. Liuzzi G, Freundlieb N, Ridder V, Hoppe J, Heise K, Zimerman M, Dobel C, Enriquez-Geppert S, Gerloff C, Zwitserlood P, Hummel FC. The involvement of the left motor cortex in learning of a novel action word lexicon. Current Biology. 2010;20:1745–51. doi: 10.1016/j.cub.2010.08.034.
    1. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F. Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. Journal of the Neurological Sciences. 2006. pp. 31–38.
    1. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research. 2005;166:23–30. doi: 10.1007/s00221-005-2334-6.
    1. Baddeley A. Working memory. Science. 1992;255:556–559. doi: 10.1126/science.1736359.
    1. Fuster JM. The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology. 1985;4:169–179.
    1. Goldman-Rakic PS. Development of cortical circuitry and cognitive function. Child Development. 1987;58:601–622. doi: 10.2307/1130201.
    1. Passingham D, Sakai K. The prefrontal cortex and working memory: physiology and brain imaging. Current Opinion in Neurobiology. 2004;14:163–168. doi: 10.1016/j.conb.2004.03.003.
    1. Courtney SM, Petit L, Haxby JV, Ungerleider LG. The role of prefrontal cortex in working memory: examining the contents of consciousness. Philosophical Transactions of the Royal Society of London. 1998;353:1819–1828. doi: 10.1098/rstb.1998.0334.
    1. Hautzel H, Mottaghy FM, Schmidt D, Zemb M, Shah NJ, Muller-Gartner HW, Krause BJ. Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neuroscience Letters. 2002;323:156–160. doi: 10.1016/S0304-3940(02)00125-8.
    1. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD. Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage. 2000;11:424–446. doi: 10.1006/nimg.2000.0572.
    1. Smith EE, Jonides J. Working memory: a view from neuroimaging. Cognitive Psychology. 1997;33:5–42. doi: 10.1006/cogp.1997.0658.
    1. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping. 2005;25:46–59. doi: 10.1002/hbm.20131.
    1. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology. 1989;61:331–349.
    1. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Goldberg TE, Weinberger DR. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex. 1999;9:20–26. doi: 10.1093/cercor/9.1.20.
    1. D'Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J. Functional MRI studies of spatial and nonspatial working memory. Brain Research. 1998;7:1–13.
    1. Tsuchida A, Fellows LK. Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. Journal of Cognitive Neuroscience. 2009;21:2263–2275. doi: 10.1162/jocn.2008.21172.
    1. Mull BR, Seyal M. Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clinical Neurophysiology. 2001;112:1672–1675. doi: 10.1016/S1388-2457(01)00606-X.
    1. Klimesch W, Schack B, Sauseng P. The functional significance of theta and upper alpha oscillations. Experimental Psychology. 2005;52:99–108.
    1. Boggio PS, Rigonatti SP, Ribeiro RB, Myczkowski ML, Nitsche MA, Pascual-Leone A, Fregni F. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. The International Journal of Neuropsychopharmacology. 2008;11:249–254. doi: 10.1017/S1461145707007833.
    1. Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Salvoro B, Giacopuzzi M, Barbieri S, Priori A. Transcranial direct current stimulation in severe, drug-resistant major depression. Journal of Affective Disorders. 2009;118:215–219. doi: 10.1016/j.jad.2009.02.015.
    1. Hummel FC, Voller B, Celnik P, Floel A, Giraux P, Gerloff C, Cohen LG. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neuroscience. 2006;7:73. doi: 10.1186/1471-2202-7-73.
    1. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, Vergari M, Zago S, Priori A. Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology, Neurosurgery, and Psychiatry. 2008;79:451–453. doi: 10.1136/jnnp.2007.135277.
    1. Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Experimental Neurology. 2009;219:14–19. doi: 10.1016/j.expneurol.2009.03.038.
    1. Schlaug G, Renga V. Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Review of Medical Devices. 2008;5:759–768. doi: 10.1586/17434440.5.6.759.
    1. Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Archives of Neurology. 2008;65:1571–1576. doi: 10.1001/archneur.65.12.1571.
    1. Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. American Journal of Physical Medicine & Rehabilitation. 2009;88:404–409.
    1. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of Neurology, Neurosurgery, and Psychiatry. 2009;80:444–447. doi: 10.1136/jnnp.2007.141853.
    1. Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S, Cogiamanian F, Barbieri S, Scarpini E, Priori A. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71:493–498. doi: 10.1212/01.wnl.0000317060.43722.a3.
    1. Marshall L, Molle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neuroscience. 2005;6:23. doi: 10.1186/1471-2202-6-23.
    1. Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS. Clinical Neurophysiology. 2009;120:1183–1187. doi: 10.1016/j.clinph.2009.03.023.
    1. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation. 2009;2:201–207. doi: 10.1016/j.brs.2009.03.005.
    1. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Investigative Ophthalmology & Visual Science. 2004;45:702–707.
    1. Accornero N, Li Voti P, La Riccia M, Gregori B. Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research. 2007;178:261–266. doi: 10.1007/s00221-006-0733-y.
    1. Antal A, Brepohl N, Poreisz C, Boros K, Csifcsak G, Paulus W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. The Clinical Journal of Pain. 2008;24:56–63. doi: 10.1097/AJP.0b013e318157233b.
    1. Dieckhofer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbele R. Transcranial direct current stimulation applied over the somatosensory cortex - differential effect on low and high frequency SEPs. Clinical Neurophysiology. 2006;117:2221–2227. doi: 10.1016/j.clinph.2006.07.136.
    1. Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology. 2004;115:456–460. doi: 10.1016/S1388-2457(03)00362-6.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–1901.
    1. Antal A, Varga ET, Kincses TZ, Nitsche MA, Paulus W. Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport. 2004;15:1307–1310.
    1. Sparing R, Mottaghy FM. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction. Methods. 2008;44:329–337. doi: 10.1016/j.ymeth.2007.02.001.
    1. Herrmann CS, Frund I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neuroscience and Biobehavioral Reviews. 2010;34:981–992. doi: 10.1016/j.neubiorev.2009.09.001.
    1. Herrmann CS, Munk MH, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences. 2004;8:347–355. doi: 10.1016/j.tics.2004.06.006.
    1. Buzsaki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.
    1. Lisman JE, Idiart MA. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–1515. doi: 10.1126/science.7878473.
    1. Pesonen M, Hamalainen H, Krause CM. Brain oscillatory 4-30 Hz responses during a visual n-back memory task with varying memory load. Brain Research. 2007;1138:171–177. doi: 10.1016/j.brainres.2006.12.076.
    1. Klimesch W, Doppelmayr M, Rohm D, Pollhuber D, Stadler W. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox. Neuroscience Letters. 2000;284:97–100. doi: 10.1016/S0304-3940(00)00985-X.
    1. Klimesch W, Doppelmayr M, Schwaiger J, Auinger P, Winkler T. 'Paradoxical' alpha synchronization in a memory task. Brain Research. 1999;7:493–501.
    1. Cooper NR, Croft RJ, Dominey SJ, Burgess AP, Gruzelier JH. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology. 2003;47:65–74. doi: 10.1016/S0167-8760(02)00107-1.
    1. Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. The European Journal of Neuroscience. 2002;15:1395–1399. doi: 10.1046/j.1460-9568.2002.01975.x.
    1. Karrasch M, Laine M, Rapinoja P, Krause CM. Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans. Neuroscience Letters. 2004;366:18–23. doi: 10.1016/j.neulet.2004.05.010.
    1. Klimesch W, Doppelmayr M, Stadler W, Pollhuber D, Sauseng P, Rohm D. Episodic retrieval is reflected by a process specific increase in human electroencephalographic theta activity. Neuroscience Letters. 2001;302:49–52. doi: 10.1016/S0304-3940(01)01656-1.
    1. Pesonen M, Bjornberg CH, Hamalainen H, Krause CM. Brain oscillatory 1-30 Hz EEG ERD/ERS responses during the different stages of an auditory memory search task. Neuroscience Letters. 2006;399:45–50. doi: 10.1016/j.neulet.2006.01.053.
    1. Baddeley A. Modularity, mass-action and memory. The Quarterly Journal of Experimental Psychology. 1986;38:527–533.
    1. Baddeley A. Working memory: looking back and looking forward. Nature Reviews. 2003;4:829–839. doi: 10.1038/nrn1201.
    1. Sauseng P, Klimesch W, Schabus M, Doppelmayr M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology. 2005;57:97–103. doi: 10.1016/j.ijpsycho.2005.03.018.
    1. Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex. 1997;7:374–385. doi: 10.1093/cercor/7.4.374.
    1. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain. The European Journal of Neuroscience. 2005;22:495–504. doi: 10.1111/j.1460-9568.2005.04233.x.
    1. Annett M. A classification of hand preference by association analysis. British Journal of Psychology. 1970;61:303–321.
    1. Lehrl S, Gallwitz A, Blaha L. Kurztest für Allgemeine Intelligenz. Göttingen: Hogrefe Testznetrale; 1992.
    1. Jasper HH. The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology. 1958;10:371–375.
    1. Beeli G, Casutt G, Baumgartner T, Jancke L. Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions. 2008;4:33. doi: 10.1186/1744-9081-4-33.
    1. Rossi S, Cappa SF, Babiloni C, Pasqualetti P, Miniussi C, Carducci F, Babiloni F, Rossini PM. Prefrontal [correction of Prefontal] cortex in long-term memory: an "interference" approach using magnetic stimulation. Nature Neuroscience. 2001;4:948–952. doi: 10.1038/nn0901-948.
    1. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283:1657–61. doi: 10.1126/science.283.5408.1657.
    1. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology. 2006;117:845–850. doi: 10.1016/j.clinph.2005.12.003.
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage. 2007;34:1443–1449. doi: 10.1016/j.neuroimage.2006.11.004.
    1. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37:163–178. doi: 10.1017/S0048577200980259.
    1. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology. 2000;111:1745–1758. doi: 10.1016/S1388-2457(00)00386-2.
    1. Haatveit BC, Sundet K, Hugdahl K, Ueland T, Melle I, Andreassen OA. The validity of d prime as a working memory index: Results from the "Bergen n-back task". Journal of Clinical and Experimental Neuropsychology. pp. 1–10.
    1. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods. pp. 177–90.

Source: PubMed

3
Abonner