Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project

Marta Sánchez, Enric Sánchez, Marta Hernández, Jessica González, Francesc Purroy, Ferran Rius, Reinald Pamplona, Cristina Farràs-Sallés, Liliana Gutiérrez-Carrasquilla, Elvira Fernández, Marcelino Bermúdez-López, Javier Salvador, Jordi Salas-Salvadó, Albert Lecube, ILERVAS project collaborators, Marta Sánchez, Enric Sánchez, Marta Hernández, Jessica González, Francesc Purroy, Ferran Rius, Reinald Pamplona, Cristina Farràs-Sallés, Liliana Gutiérrez-Carrasquilla, Elvira Fernández, Marcelino Bermúdez-López, Javier Salvador, Jordi Salas-Salvadó, Albert Lecube, ILERVAS project collaborators

Abstract

There is a close relationship between lifestyle behaviors and excess adiposity. Although body mass index (BMI) is the most used approach to estimate excess weight, other anthropometric indices have been developed to measure total body and abdominal adiposity. However, little is known about the impact of physical activity and adherence to a Mediterranean diet on these indices. Here we report the results of a cross-sectional study with 6672 middle-aged subjects with low to moderate cardiovascular risk from the Ilerda Vascular (ILERVAS) project. The participants' adherence to physical activity (International Physical Activity Questionnaire short form) and MedDiet (Mediterranean Diet Adherence Screener) was evaluated. Measures of total adiposity (BMI, Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE), and Deurenberg's formula), central adiposity (waist and neck circumferences, conicity index, waist to height ratio, Bonora's equation, A body adiposity index, and body roundness index), and lean body mass (Hume formula) were assessed. Irrespective of sex, lower indices of physical activity were associated with higher values of total body fat and central adiposity. This result was constant regardless of the indices used to estimate adiposity. However, the association between MedDiet and obesity indices was much less marked and more dependent on sex than that observed for physical activity. Lean body mass was influenced by neither physical activity nor MedDiet adherence. No joint effect between physical activity and MedDiet to lower estimated total or central adiposity indices was shown. In conclusion, physical activity is related to lower obesity indices in a large cohort of middle-aged subjects. MedDiet showed a slight impact on estimated anthropometric indices, with no joint effect when considering both lifestyle variables. ClinTrials.gov Identifier: NCT03228459.

Keywords: Mediterranean diet; adiposity; body fat; obesity indices; physical activity; questionnaire.

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Inoue Y., Qin B., Poti J., Sokol R., Gordon-Larsen P. Epidemiology of obesity in adults: Latest trends. Curr. Obes. Rep. 2018;7:276–288. doi: 10.1007/s13679-018-0317-8.
    1. Pearson N., Biddle S.J. Sedentary behavior and dietary intake in children, adolescents, and adults. A systematic review. Am. J. Prev. Med. 2011;41:178–188. doi: 10.1016/j.amepre.2011.05.002.
    1. World Health Organization (WHO) Global Health Observatory (GHO) Data. Obesity. [(accessed on 15 October 2017)]; Available online:
    1. Upadhyay J., Farr O., Perakakis N., Ghaly W., Mantzoros C. Obesity as a disease. Med. Clin. N. Am. 2018;102:13–33. doi: 10.1016/j.mcna.2017.08.004.
    1. Mohammadi H.R., Khoshnam M.S., Khoshnam E. Effects of different modes of exercise training on body composition and risk factors for cardiovascular disease in middle-aged men. Int. J. Prev. Med. 2018;9:9.
    1. Drenowatz C., Shook R.P., Hand G.A., Hébert J.R., Blair S.N. The independent association between diet quality and body composition. Sci. Rep. 2014;4:4928. doi: 10.1038/srep04928.
    1. Castro-Quezada I., Román-Viñas B., Serra-Majem L. The mediterranean diet and nutritional adequacy: A review. Nutrients. 2014;6:231–248. doi: 10.3390/nu6010231.
    1. Davis C., Bryan J., Hodgson J., Murphy K. Definition of the Mediterranean Diet: A Literature Review. Nutrients. 2015;7:9139–9153. doi: 10.3390/nu7115459.
    1. Serra-Majem L., Roman B., Estruch R. Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutr. Rev. 2006;64:S27–S47. doi: 10.1111/j.1753-4887.2006.tb00232.x.
    1. Godos J., Zappalà G., Bernardini S., Giambini I., Bes-Rastrollo M., Martinez-Gonzalez M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017;68:138–148. doi: 10.1080/09637486.2016.1221900.
    1. Valls-Pedret C., Sala-Vila A., Serra-Mir M., Corella D., De la Torre R., Martínez-González M.Á. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern. Med. 2015;175:1094–1103. doi: 10.1001/jamainternmed.2015.1668.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018;378:1279–1290. doi: 10.1056/NEJMoa1800389.
    1. Itsiopoulos C., Kucianski T., Mayr H.L., van Gaal W.J., Martinez-Gonzalez M.A., Vally H., Kingsley M., Kouris-Blazos A., Radcliffe J., Segal L., et al. The AUStralian MEDiterranean diet heart trial (AUSMED heart trial): A randomized clinical trial in secondary prevention of coronary heart disease in a multi-ethnic Australian population: Study protocol. Am. Heart J. 2018;203:4–11. doi: 10.1016/j.ahj.2018.05.010.
    1. Boghossian N.S., Yeung E.H., Mumford S.L., Zhang C., Gaskins A.J., Wactawski-Wende J., Schisterman E.F., BioCycle Study Group Adherence to the Mediterranean diet and body fat distribution in reproductive aged women. Eur. J. Clin. Nutr. 2013;67:289–294. doi: 10.1038/ejcn.2013.4.
    1. Bertoli S., Leone A., Vignati L., Bedogni G., Martínez-González M.Á., Bes-Rastrollo M., Spadafranca A., Vanzulli A., Battezzati A. Adherence to the Mediterranean diet is inversely associated with visceral abdominal tissue in Caucasian subjects. Clin. Nutr. 2015;34:1266–1272. doi: 10.1016/j.clnu.2015.10.003.
    1. Barrea L., Muscogiuri G., Macchia P.E., Di Somma C., Falco A., Savanelli M.C., Colao A., Savastano S. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study. Nutrients. 2017;9:151. doi: 10.3390/nu9020151.
    1. Blundell J.E., Dulloo A.G., Salvador J., Frühbeck G., EASO SAB Working Group on BMI Beyond BMI—Phenotyping the obesities. Obes. Facts. 2014;7:322–328. doi: 10.1159/000368783.
    1. Gómez-Ambrosi J., Silva C., Galofré J.C., Escalada J., Santos S., Millán D., Vila N., Ibañez P., Gil M.J., Valentí V., et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 2012;36:286–294. doi: 10.1038/ijo.2011.100.
    1. Kelly T.L., Wilson K.E., Heymsfield S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE. 2009;4:e7038. doi: 10.1371/journal.pone.0007038.
    1. Gómez-Ambrosi J., Silva C., Catalán V., Rodríguez A., Galofré J.C., Escalada J., Valentí V., Rotellar F., Romero S., Ramírez B., et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012;35:383–388. doi: 10.2337/dc11-1334.
    1. Deurenberg P., Weststrate J.A., Seidell J.C. Body mass index as a measure of body fatness: Age- and sex-specific prediction formulas. Br. J. Nutr. 1991;65:105–114. doi: 10.1079/BJN19910073.
    1. Valdez R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol. 1991;44:955–956. doi: 10.1016/0895-4356(91)90059-I.
    1. Ashwell M., Gunn P., Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012;13:275–286. doi: 10.1111/j.1467-789X.2011.00952.x.
    1. Bonora E., Micciolo R., Ghiatas A.A., Lancaster J.L., Alyassin A., Muggeo M., DeFronzo R.A. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism. 1995;44:1617–1625. doi: 10.1016/0026-0495(95)90084-5.
    1. Krakauer N.Y., Krakauer J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7:e39504. doi: 10.1371/journal.pone.0039504.
    1. Thomas D.M., Bredlau C., Bosy-Westphal A., Mueller M., Shen W., Gallagher D., Maeda Y., McDougall A., Peterson C.M., Ravussin E., et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21:2264–2271. doi: 10.1002/oby.20408.
    1. Després J.P., Couillard C., Gagnon J., Bergeron J., Leon A.S., Rao D.C., Skinner J.S., Wilmore J.H., Bouchard C. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: The Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb. Vasc. Biol. 2000;20:1932–1938. doi: 10.1161/01.ATV.20.8.1932.
    1. Betriu À., Farràs C., Abajo M., Martinez-Alonso M., Arroyo D., Barbé F., Buti M., Lecube A., Portero M., Purroy F., et al. Randomised intervention study to assess the prevalence of subclinical vascular disease and hidden kidney disease and its impact on morbidity and mortality: The ILERVAS project. Nefrologia. 2016;36:389–396. doi: 10.1016/j.nefro.2016.02.008.
    1. Schröder H., Fitó M., Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Lamuela-Raventós R., Ros E., Salaverría I., Fiol M., et al. A short screener is valid for assessing mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011;14:1140–1145. doi: 10.3945/jn.110.135566.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. World Health Organization . Obesity: Preventing and Managing the Global Epidemic. World Health Organization; Geneva, Switzerland: 2000. pp. 1–252. (WHO Technical Report Series). Report of a WHO Consultation.
    1. Ma W.Y., Yang C.Y., Shih S.R., Hsieh H.J., Hung C.S., Chiu F.C., Lin M.S., Liu P.H., Hua C.H., Hsein Y.C., et al. Measurement of Waist Circumference: Midabdominal or iliac crest? Diabetes Care. 2013;36:1660–1666. doi: 10.2337/dc12-1452.
    1. Ben-Noun L.L., Laor A. Relationship between changes in neck circumference and cardiovascular risk factors. Exp. Clin. Cardiol. 2006;11:14–20.
    1. Hume R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966;19:389–391. doi: 10.1136/jcp.19.4.389.
    1. Nystoriak M.A., Bhatnagar A. Cardiovascular effects and benefits of exercise. Front. Cardiovasc. Med. 2018;5:135. doi: 10.3389/fcvm.2018.00135.
    1. Villareal D., Aguirre L., Gurney B., Waters D.L., Sinacore D.R., Colombo E., Armamento-Villareal R., Qualls C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017;376:1943–1955. doi: 10.1056/NEJMoa1616338.
    1. Jakicic J.M., Gregg E., Knowler W., Kelley D.E., Lang W., Miller G.D., Pi-Sunyer F.X., Regensteiner J.G., Rejeski W.J., Ridisl P., et al. Activity patterns of obese adults with type 2 diabetes in the Look AHEAD study. Med. Sci. Sports Exerc. 2010;42:1995–2005. doi: 10.1249/MSS.0b013e3181e054f0.
    1. Rosique-Esteban N., Díaz-López A., Martínez-González M.A., Corella D., Goday A., Martínez J.A., Romaguera D., Vioque J., Arós F., Garcia-Rios A., et al. Leisure-time physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMED-PLUS intervention trial: A cross-sectional analysis. PLoS ONE. 2017;12:e0172253. doi: 10.1371/journal.pone.0172253.
    1. Wolff-Hughes D.L., Fitzhugh E.C., Bassett D.R., Churilla J.R. Total activity counts and bouted minutes of moderate-to-vigorous physical activity: Relationships with cardiometabolic biomarkers using 2003–2006 NHANES. J. Phys. Act Health. 2015;12:694–700. doi: 10.1123/jpah.2013-0463.
    1. Jefferis B.J., Parsons T.J., Sartini C., Ash S., Lennon L.T., Wannamethee S.G., Lee I.M., Whincup P.H. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. Int. J. Behav. Nutr. Phys. Act. 2016;13:36. doi: 10.1186/s12966-016-0361-2.
    1. Cameron N., Godino J., Nichols J.F., Wing D., Hill L., Patrick K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese Latino and non-Latino adults. Int. J. Obes. 2017;41:873–877. doi: 10.1038/ijo.2017.49.
    1. Ross R., Dagnone D., Jones P.J., Smith H., Paddags A., Hudson R., Janssen I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. Ann. Intern. Med. 2000;133:92–103. doi: 10.7326/0003-4819-133-2-200007180-00008.
    1. Mourier A., Gautier J.F., De Kerviler E., Bigard A.X., Villette J.M., Garnier J.P., Duvallet A., Guezennec C.Y., Cathelineau G. Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care. 1997;20:385–391. doi: 10.2337/diacare.20.3.385.
    1. Fried S.K., Leibel R.L., Edens N.K., Kral J.G. Lipolysis in intraabdominal adipose tissue of obese women and men. Obes. Res. 1993;1:443–448. doi: 10.1002/j.1550-8528.1993.tb00026.x.
    1. Meek S.E., Nair K.S., Jensen M.D. Insulin regulation of regional free fatty acid metabolism. Diabetes. 1999;48:10–14. doi: 10.2337/diabetes.48.1.10.
    1. Petersen A.M.W., Pedersen B.K. The role of IL-6 in mediating the anti-inflammatory effects of exercise. J. Physiol. Pharmacol. 2006;57(Suppl. 10):43–51.
    1. Petersen E.W., Carey A.L., Sacchetti M., Steinberg G.R., Macaulay S.L., Febbraio M.A., Pedersen B.K. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am. J. Physiol. Endocrinol. Metab. 2005;288:155–162. doi: 10.1152/ajpendo.00257.2004.
    1. Buscemi S., Corleo D., Vasto S., Buscemi C., Massenti M.F., Nuzzo D., Lucisano G., Barile A.M., Rosafio G., Maniaci V., et al. Factors associated with circulating concentrations of irisin in the general population cohort of the ABCD study. Int. J. Obes. 2018;42:398–404. doi: 10.1038/ijo.2017.255.
    1. Biniaminov N., Bandt S., Roth A., Haertel S., Neumann R., Bub A. Irisin, physical activity and fitness status in healthy humans: No association under resting conditions in a cross-sectional study. PLoS ONE. 2018;13:e0189254. doi: 10.1371/journal.pone.0189254.
    1. Miyamoto-Mikami E., Sato K., Kurihara T., Hasegawa N., Fujie S., Fujita S., Sanada K., Hamaoka T., Tabata I., Iemitsu M. Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS ONE. 2015;10:e0120354. doi: 10.1371/journal.pone.0120354.
    1. Cowan T.E., Brennan A.M., Stotz P.J., Clarke J., Lamarche B., Ross R. Separate Effects of Exercise Amount and Intensity on Adipose Tissue and Skeletal Muscle Mass in Adults with Abdominal Obesity. Obesity. 2018;26:1696–1703. doi: 10.1002/oby.22304.
    1. Ulian M.D., Aburad L., da Silva Oliveira M.S., Poppe A.C.M., Sabatini F., Perez I., Gualano B., Benatti F.B., Pinto A.J., Roble O.J., et al. Effects of health at every size® interventions on health-related outcomes of people with overweight and obesity: A systematic review. Obes. Rev. 2018;19:1659–1666. doi: 10.1111/obr.12749.
    1. Anton S.D., Hida A., Heekin K., Sowalsky K., Karabetian C., Mutchie H., Leeuwenburgh C., Manini T.M., Barnett T.E. Effects of Popular Diets without Specific Calorie Targets on Weight Loss Outcomes: Systematic Review of Findings from Clinical Trials. Nutrients. 2017;9:822. doi: 10.3390/nu9080822.
    1. Mancini J.G., Filion K.B., Atallah R., Eisenberg M.J. Systematic Review of the Mediterranean Diet for Long-Term Weight Loss. Am. J. Med. 2016;129:407–415. doi: 10.1016/j.amjmed.2015.11.028.
    1. Casas R., Sacanella E., Estruch R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets. 2014;14:245–254. doi: 10.2174/1871530314666140922153350.
    1. Salas-Salvadó J., Becerra-Tomás N., García-Gavilán J.F., Bulló M., Barrubés L. Mediterranean diet and cardiovascular disease prevention: What do we know? Prog. Cardiovasc. Dis. 2018;61:62–67. doi: 10.1016/j.pcad.2018.04.006.
    1. Goodpaster B.H., DeLany J.P., Otto A.D., Kuller L., Vockley J., South-Paul J.E., Thomas S.B., Brown J., McTigue K., Hames K.C., et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: A randomized trial. JAMA. 2010;304:1795–1802. doi: 10.1001/jama.2010.1505.
    1. Nang E.E., van Dam R.M., Tan C.S., Mueller-Riemenschneider F., Lim Y.T., Ong K.Z., Ee S., Lee J., Tai E.S. Association of television viewing time with body composition and calcified subclinical atherosclerosis in Singapore Chinese. PLoS ONE. 2015;10:e0132161. doi: 10.1371/journal.pone.0132161.
    1. López-Sobaler A.M., Rodríguez-Rodríguez E., Aranceta-Bartrina J., Gil Á., González-Gross M., Serra-Majem L., Varela-Moreiras G., Ortega R.M. General and abdominal obesity is related to physical activity, smoking and sleeping behaviours and mediated by the educational level: Findings from the ANIBES Study in Spain. PLoS ONE. 2016;11:e0169027. doi: 10.1371/journal.pone.0169027.
    1. Ozemek C., Lavie C.J., Rognmo Ø. Global physical activity levels—Need for intervention. Prog. Cardiovasc. Dis. 2019;62:102–107. doi: 10.1016/j.pcad.2019.02.004.

Source: PubMed

3
Abonner