Immersive Virtual Environments and Wearable Haptic Devices in rehabilitation of children with neuromotor impairments: a single-blind randomized controlled crossover pilot study

Ilaria Bortone, Michele Barsotti, Daniele Leonardis, Alessandra Crecchi, Alessandra Tozzini, Luca Bonfiglio, Antonio Frisoli, Ilaria Bortone, Michele Barsotti, Daniele Leonardis, Alessandra Crecchi, Alessandra Tozzini, Luca Bonfiglio, Antonio Frisoli

Abstract

Background: The past decade has seen the emergence of rehabilitation treatments using virtual reality. One of the advantages in using this technology is the potential to create positive motivation, by means of engaging environments and tasks shaped in the form of serious games. The aim of this study is to determine the efficacy of immersive Virtual Environments and weaRable hAptic devices (VERA) for rehabilitation of upper limb in children with Cerebral Palsy (CP) and Developmental Dyspraxia (DD).

Methods: A two period cross-over design was adopted for determining the differences between the proposed therapy and a conventional treatment. Eight children were randomized into two groups: one group received the VERA treatment in the first period and the manual therapy in the second period, and viceversa for the other group. Children were assessed at the beginning and the end of each period through both the Nine Hole Peg Test (9-HPT, primary outcome) and Kinesiological Measurements obtained during the performing of similar tasks in a real setting scenario (secondary outcomes).

Results: All subjects, not depending from which group they come from, significantly improved in both the performance of the 9-HPT and in the parameters of the kinesiological measurements (movement error and smoothness). No statistically significant differences have been found between the two groups.

Conclusions: These findings suggest that immersive VE and wearable haptic devices is a viable alternative to conventional therapy for improving upper extremity function in children with neuromotor impairments. Trial registration ClinicalTrials, NCT03353623. Registered 27 November 2017-Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT03353623.

Keywords: Human Motion Analysis; Rehabilitation; Serious game; Tactile Feedback; Virtual reality.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram. CONSORT flow diagram illustrating participant flow during the different phases of the study. Flow of participants, withdrawals, and inclusion in analysis are described [45]
Fig. 2
Fig. 2
Set up illustration. a Screenshot of one of the experimental rehabilitation session with the VERA system. b, c Show detail of the fingertip haptic device rendering tangential and normal contact forces through cutaneous feedback [23, 46]. Screenshots of the virtual gaming scenarios [1, 2, 39] involving grasping and reaching task in the frontal plane (d), and path tracking tasks in the horizontal plane (e)
Fig. 3
Fig. 3
Layout of VERA Rehabilitation Therapy. Layout of the exercises proposed in the VERA treatment, involving planar tracking (a) and reach-to-grasp (b) motor tasks, and the layout of the similar tasks proposed in the kinesiological assessment (c, d respectively)
Fig. 4
Fig. 4
Clinical Scale Results Top graphs: Performance for each subject in the four assessment points: T0, pre-treatment assessment of Period 1; T1, post-treatment assessment of Period 1; T2, pre-treatment assessment of Period 2; T3, post-treatment assessment of Period 2. Period 1, from T0 to T1; Wash out, from T1 to T2; Period 2, from T2 to T3. Each subject is indicated by a different symbol and the kind of treatment he/she underwent in each period is marked by the color of the line (yellow for VR and blue for C). Bottom graphs: Performance changes between post- and pre-treatment measurements (ΔP) averaged over subjects within each period (ΔP1 and ΔP2). In order to improve the readability of the graphs in such a way to have higher values for better performance, ΔP was multiplied by minus one. Colors distinguish the two groups (experimental sequence). Statistical significances of the β LME model parameters are marked through asterisks (see Eq. 1, β0intercept, β1period, β2treatment, β3baseline, β4period*treatment)
Fig. 5
Fig. 5
Results of the weighted error metric. Top graphs: Performance for each subject in the four assessment points: T0, pre-treatment assessment of Period 1; T1, post-treatment assessment of Period 1; T2, pre-treatment assessment of Period 2; T3, post-treatment assessment of Period 2. Period 1, from T0 to T1; Wash out, from T1 to T2; Period 2, from T2 to T3. Each subject is indicated by a different symbol and the kind of treatment he/she underwent in each period is marked by the color of the line (yellow for VR and blue for C). Bottom graphs: Performance changes between post- and pre-treatment measurements (ΔP) averaged over subjects within each period (ΔP1 and ΔP2). In order to improve the readability of the graphs in such a way to have higher values for better performance, ΔP was multiplied by minus one. Colors distinguish the two groups (experimental sequence). Statistical significances of the β LME model parameters are marked through asterisks (see Eq. 1, β0intercept, β1period, β2treatment, β3baseline, β4period*treatment)
Fig. 6
Fig. 6
Results of the smoothness metric. Top graphs: Performance for each subject in the four assessment points: T0, pre-treatment assessment of Period 1; T1, post-treatment assessment of Period 1; T2, pre-treatment assessment of Period 2; T3, post-treatment assessment of Period 2. Period 1, from T0 to T1; Wash out, from T1 to T2; Period 2, from T2 to T3. Each subject is indicated by a different symbol and the kind of treatment he/she underwent in each period is marked by the color of the line (yellow for VR and blue for C). Bottom graphs: Performance changes between post- and pre-treatment measurements (ΔP) averaged over subjects within each period (ΔP1 and ΔP2). In order to improve the readability of the graphs in such a way to have higher values for better performance, ΔP was multiplied by minus one. Colors distinguish the two groups (experimental sequence). Statistical significances of the β LME model parameters are marked through asterisks (see Eq. 1, β0intercept, β1period, β2treatment, β3baseline, β4period*treatment)

References

    1. Bortone I, Leonardis D, Solazzi M, Procopio C, Crecchi A, Briscese L, et al. Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In: Converging clinical and engineering research on neurorehabilitation II. Berlin: Springer; 2017. p. 443–7.
    1. Bortone I, Leonardis D, Solazzi M, Procopio C, Crecchi A, Bonfiglio L, et al. Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: a feasibility study. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE; 2017. p. 1094–9.
    1. Wilson P, Green D, Caeyenberghs K, Steenbergen B, Duckworth J. Integrating new technologies into the treatment of CP and DCD. Curr Develop Disord Rep. 2016;3(2):138–151. doi: 10.1007/s40474-016-0083-9.
    1. Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: a systematic review. Develop Neurorehab. 2016;19(1):64–71. doi: 10.3109/17518423.2014.899648.
    1. Shierk A, Lake A, Haas T. Review of therapeutic interventions for the Upper Limb Classified by manual ability in children with Cerebral Palsy. In: Seminars in plastic surgery. vol. 30. Thieme Medical Publishers; 2016. p. 014–23.
    1. Chiu HC, Ada L, Lee HM. Upper limb training using Wii Sports Resor™ for children with hemiplegic cerebral palsy: A randomized, single-blind trial. Clin Rehab. 2014;28(10):1015–1024. doi: 10.1177/0269215514533709.
    1. Hammond J, Jones V, Hill EL, Green D, Male I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study. Child Care Health Develop. 2014;40(2):165–175. doi: 10.1111/cch.12029.
    1. Zoccolillo L, Morelli D, Cincotti F, Muzzioli L, Gobbetti T, Paolucci S, et al. Video-game based therapy performed by children with cerebral palsy: a cross-over randomized controlled trial and a cross-sectional quantitative measure of physical activity. Eur J Phys Rehab Med. 2015;51(6):669–676.
    1. Shin Jw, Song Gb, Hwangbo G. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J Phys Ther Sci. 2015;27(7):2151–2154. doi: 10.1589/jpts.27.2151.
    1. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, et al. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehab Neural Repair. 2015;29(2):183–192. doi: 10.1177/1545968314541172.
    1. Howie EK, Campbell A, Straker L. An active video game intervention does not improve physical activity and sedentary time of children at-risk for developmental coordination disorder: a crossover randomized trial. Child Care Health Develop. 2016;42(2):253–260. doi: 10.1111/cch.12305.
    1. Preston N, Weightman A, Gallagher J, Levesley M, Mon-Williams M, Clarke M, et al. A pilot single-blind multicentre randomized controlled trial to evaluate the potential benefits of computer-assisted arm rehabilitation gaming technology on the arm function of children with spastic cerebral palsy. Clin Rehab. 2016;30(10):1004–1015. doi: 10.1177/0269215515604699.
    1. Sakzewski L, Reedman S, Hoffmann T. Do we really know what they were testing? Incomplete reporting of interventions in randomised trials of upper limb therapies in unilateral cerebral palsy. Res Develop Disabil. 2016;59:417–427. doi: 10.1016/j.ridd.2016.09.018.
    1. Bedair R, Al-Talawy H, Shoukry K, Abdul-Raouf E. Impact of virtual reality games as an adjunct treatment tool on upper extremity function of spastic hemiplegic children. Int J PharmTech Res. 2016;9(6):1–8.
    1. Sajan JE, John JA, Grace P, Sabu SS, Tharion G. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: a pilot, randomized controlled trial. Develop Neurorehab. 2017;20(6):361–367. doi: 10.1080/17518423.2016.1252970.
    1. Kassee C, Hunt C, Holmes MWR, Lloyd M. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. J Pediatri Rehab Med. 2017;10(2):145–154.
    1. El-Shamy SM. Efficacy of Armeo® robotic therapy versus conventional therapy on Upper Limb function in children with hemiplegic Cerebral Palsy. Am J Phys Med Rehab. 2018;97(3):164–169. doi: 10.1097/PHM.0000000000000852.
    1. Cavalcante Neto JL, Steenbergen B, Wilson P, Zamunér AR, Tudella E. Is Wii-based motor training better than task-specific matched training for children with developmental coordination disorder? A randomized controlled trial. Disab Rehab. 2019;42:2611–2620. doi: 10.1080/09638288.2019.1572794.
    1. Tarakci E, Arman N, Tarakci D, Kasapcopur O. Leap Motion Controller-based training for upper extremity rehabilitation in children and adolescents with physical disabilities: a randomized controlled trial. J Hand Ther. 2019;33:220–228. doi: 10.1016/j.jht.2019.03.012.
    1. Rand D, Kizony R, Weiss PTL. The Sony PlayStation II EyeToy: low-cost virtual reality for use in rehabilitation. J Neurol Phys Ther. 2008;32(4):155–163. doi: 10.1097/NPT.0b013e31818ee779.
    1. Krebs HI, Peltz AR, Berkowe J, Angacian G, Cortes M, Edwards D. Robotic biomarkers in RETT Syndrome: Evaluating stiffness. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE; 2016. p. 680–4.
    1. Burdet E, Franklin DW, Milner TE. Human robotics: neuromechanics and motor control. New York: MIT Press; 2013.
    1. Leonardis D, Solazzi M, Bortone I, Frisoli A. A 3-RSR Haptic Wearable device for rendering fingertip contact forces. In: IEEE Transactions on Haptics. 2016.
    1. Slater M, Spanlang B, Sanchez-Vives MV, Blanke O. First person experience of body transfer in virtual reality. PLoS ONE. 2010;5(5):e10564. doi: 10.1371/journal.pone.0010564.
    1. Perfetti C, Ghedina R, Hernández DJ. El ejercicio terapéutico cognoscitivo para la reeducación motora del hemipléjico adulto. Edika-Med. 1999.
    1. Rodríguez-Larrad A, Rizzello C, Perfetti C, Panté F, Zernitz M. Ejercicio terapéutico cognoscitivo. Cano-de-la-Cuerda R, Collado Vázquez S (eds), Neurorehabilitación Métodos Específicos de Valoración y Tratamiento Madrid: Médica Panamericana. 2012. p. 307–21.
    1. Chanubol R, Wongphaet P, Chavanich N, Werner C, Hesse S, Bardeleben A, et al. A randomized controlled trial of Cognitive Sensory Motor Training Therapy on the recovery of arm function in acute stroke patients. Clin Rehab. 2012;26(12):1096–1104. doi: 10.1177/0269215512444631.
    1. Sallés L, Martín-Casas P, Gironès X, Durà MJ, Lafuente JV, Perfetti C. A neurocognitive approach for recovering upper extremity movement following subacute stroke: a randomized controlled pilot study. J Phys Ther Sci. 2017;29(4):665–672. doi: 10.1589/jpts.29.665.
    1. De Patre D, Van de Winckel A, Panté F, Rizzello C, Zernitz M, Mansour M, et al. Visual and motor recovery after “Cognitive Therapeutic Exercises” in cortical blindness: a case study. J Neurol Phys Ther. 2017;41(3):164–172. doi: 10.1097/NPT.0000000000000189.
    1. Alriksson-Schmidt A, Nordmark E, Czuba T, Westbom L. Stability of the Gross Motor Function Classification System in children and adolescents with cerebral palsy: a retrospective cohort registry study. Develop Med Child Neurol. 2017;9:12.
    1. Jeevanantham D, Dyszuk E, Bartlett D. The manual ability classification system: a scoping review. Pediatr Phys Ther. 2015;27(3):236–241. doi: 10.1097/PEP.0000000000000151.
    1. Zoia S, Pelamatti G, Cuttini M, Casotto V, Scabar A. Performance of gesture in children with and without DCD: effects of sensory input modalities. Develop Med Child Neurol. 2002;44(10):699–705. doi: 10.1111/j.1469-8749.2002.tb00273.x.
    1. Zoia S, Pelamatti G, Rumiati RI. Praxic skills in down and mentally retarded adults: evidence for multiple action routes. Brain Cognit. 2004;54(1):7–17. doi: 10.1016/S0278-2626(03)00055-1.
    1. Zoia S, Barnett A, Wilson P, Hill E. Developmental coordination disorder: current issues. Child Care Health Develop. 2006;32(6):613–618. doi: 10.1111/j.1365-2214.2006.00697.x.
    1. Bourke-Taylor H. Melbourne assessment of unilateral upper limb function: construct validity and correlation with the pediatric evaluation of disability inventory. Develop Med Child Neurol. 2003;45(2):92–96. doi: 10.1111/j.1469-8749.2003.tb00911.x.
    1. Poole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, et al. Measuring dexterity in children using the Nine-hole Peg Test. J Hand Ther. 2005;18(3):348–351. doi: 10.1197/j.jht.2005.04.003.
    1. Xu K, Wang L, Mai J, He L. Efficacy of constraint-induced movement therapy and electrical stimulation on hand function of children with hemiplegic cerebral palsy: a controlled clinical trial. Disab Rehab. 2012;34(4):337–346. doi: 10.3109/09638288.2011.607213.
    1. Feys P, Lamers I, Francis G, Benedict R, Phillips G, LaRocca N, et al. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Multiple Sclerosis J. 2017;23(5):711–720. doi: 10.1177/1352458517690824.
    1. Bortone I, Leonardis D, Mastronicola N, Crecchi A, Bonfiglio L, Procopio C, et al. Wearable Haptics and Immersive Virtual Reality Rehabilitation Training in Children With Neuromotor Impairments. IEEE Trans Neural Syst Rehab Engi. 2018;26(7):1469–1478. doi: 10.1109/TNSRE.2018.2846814.
    1. Stevens J. A modern approach: intermediate statistics. New Jersey: Mahwah; 1999.
    1. Coluccini M, Maini ES, Martelloni C, Sgandurra G, Cioni G. Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait Posture. 2007;25(4):493–501. doi: 10.1016/j.gaitpost.2006.12.015.
    1. Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, et al. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010;41(7):1477–1484. doi: 10.1161/STROKEAHA.110.584979.
    1. Pavão SL, Arnoni JLB, Oliveira AKC, Rocha NACF. Impact of a virtual reality-based intervention on motor performance and balance of a child with cerebral palsy: a case study. Revista Paulista de Pediatria. 2014;32(4):389–394.
    1. Slater M, Lotto B, Arnold MM, Sanchez-Vives MV. How we experience immersive virtual environments: the concept of presence and its measurement. UB J Psychol. 2009;40(2):193–210.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasib Stud. 2016;2(1):64. doi: 10.1186/s40814-016-0105-8.
    1. Leonardis D, Solazzi M, Bortone I, Frisoli A. A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. In: World Haptics Conference (WHC), 2015 IEEE; 2015. p. 388–93.

Source: PubMed

3
Abonner