Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study

Loretta Müller, Megan Meyer, Rebecca N Bauer, Haibo Zhou, Hongtao Zhang, Shannon Jones, Carole Robinette, Terry L Noah, Ilona Jaspers, Loretta Müller, Megan Meyer, Rebecca N Bauer, Haibo Zhou, Hongtao Zhang, Shannon Jones, Carole Robinette, Terry L Noah, Ilona Jaspers

Abstract

Enhancing antiviral host defense responses through nutritional supplementation would be an attractive strategy in the fight against influenza. Using inoculation with live attenuated influenza virus (LAIV) as an infection model, we have recently shown that ingestion of sulforaphane-containing broccoli sprout homogenates (BSH) reduces markers of viral load in the nose. To investigate the systemic effects of short-term BSH supplementation in the context of LAIV-inoculation, we examined peripheral blood immune cell populations in non-smoking subjects from this study, with a particular focus on NK cells. We carried out a randomized, double-blinded, placebo-controlled study measuring the effects of BSH (N = 13) or placebo (alfalfa sprout homogenate, ASH; N = 16) on peripheral blood mononuclear cell responses to a standard nasal vaccine dose of LAIV in healthy volunteers. Blood was drawn prior to (day-1) and post (day2, day21) LAIV inoculation and analyzed for neutrophils, monocytes, macrophages, T cells, NKT cells, and NK cells. In addition, NK cells were enriched, stimulated, and assessed for surface markers, intracellular markers, and cytotoxic potential by flow cytometry. Overall, LAIV significantly reduced NKT (day2 and day21) and T cell (day2) populations. LAIV decreased NK cell CD56 and CD158b expression, while significantly increasing CD16 expression and cytotoxic potential (on day2). BSH supplementation further increased LAIV-induced granzyme B production (day2) in NK cells compared to ASH and in the BSH group granzyme B levels appeared to be negatively associated with influenza RNA levels in nasal lavage fluid cells. We conclude that nasal influenza infection may induce complex changes in peripheral blood NK cell activation, and that BSH increases virus-induced peripheral blood NK cell granzyme B production, an effect that may be important for enhanced antiviral defense responses.

Trial registration: ClinicalTrials.gov NCT01269723.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT 2010 Flow diagram for…
Fig 1. CONSORT 2010 Flow diagram for recruitment and randomization of subjects.
ASH = alfalfa sprout homogenate, BSH = broccoli sprout homogenate, LAIV = life attenuated influenza virus, NK cell = natural killer cell.
Fig 2. Overview of sample collection and…
Fig 2. Overview of sample collection and processing.
(A) Study design and sample collection. Details of the complete study have been published previously [1]. (B) Blood samples were stained for total leukocyte populations or used for NK cell enrichment. NK cells were analyzed for surface marker expression or cytokine production either naive or stimulated with PMA and ionomycin (Iono). Half of the peripheral blood mononuclear cells (PBMCs) were frozen and used later for the cytotoxicity assay.
Fig 3. LAIV effect on cytotoxicity potential…
Fig 3. LAIV effect on cytotoxicity potential of systemic NK cells (regardless of treatment).
Following NK cell enrichment, NK cells were incubated with K562 target cells for 4hrs and the cell mixture was stained for viability. N = 26 (day-1 and 2), N = 22 (day21). Data are shown as whiskers with 10–90 percentiles. *significantly different (p = 0.015), tested with paired t test.
Fig 4. BSH effect on intracellular markers…
Fig 4. BSH effect on intracellular markers of systemic NK cells.
Following NK cell enrichment, NK cells were stimulated with PMA/Ionomycin and blocked with Brefeldin A for 4hrs. The differences of day2 or day21 and day-1 are shown. Data are presented as mean±std.dev. N = 9–14. Data are shown as whiskers with 10–90 percentiles. *significantly different (p = 0.049), tested with two sample t test.
Fig 5. Correlation between nasal influenza B…
Fig 5. Correlation between nasal influenza B virus load and granzyme B in systemic NK cells.
Viral load in nasal lavage fluid cells collected after inoculation with LAIV was detected via RT-PCR to Flu B RNA and expressed as log transformed area under the curve (details see [1]). The correlation with granzyme B levels in systemic NK cells was tested with the Pearson correlation for both groups.

References

    1. Noah TL, Zhang HT, Zhou HB, Glista-Baker E, Müller L, Bauer RN, et al. (2014) Effect of Broccoli Sprouts on Nasal Response to Live Attenuated Influenza Virus in Smokers: A Randomized, Double-Blind Study. Plos One 9.
    1. Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12: 87–97. 10.1208/s12248-009-9162-8
    1. Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI (2012) Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol 64: 503–508. 10.1016/j.etp.2010.11.005
    1. Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol 130: 244–251. 10.1016/j.clim.2008.10.007
    1. Dinkova-Kostova AT, Fahey JW, Wade KL, Jenkins SN, Shapiro TA, Fuchs EJ, et al. (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16: 847–851.
    1. Heber D, Li Z, Garcia-Lloret M, Wong AM, Lee TY, Thames G, et al. (2013) Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct 5: 35–41.
    1. Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, et al. (2014) Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 7: 813–823.
    1. Meyer M, Kesic MJ, Clarke J, Ho E, Simmen RC, Diaz-Sanchez D, et al. (2013) Sulforaphane induces SLPI secretion in the nasal mucosa. Respir Med 107: 472–475. 10.1016/j.rmed.2012.11.006
    1. Kesic MJ, Simmons SO, Bauer R, Jaspers I (2011) Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells. Free Radic Biol Med 51: 444–453. 10.1016/j.freeradbiomed.2011.04.027
    1. Jaspers I, Horvath KM, Zhang W, Brighton LE, Carson JL, Noah TL (2010) Reduced expression of IRF7 in nasal epithelial cells from smokers after infection with influenza. Am J Respir Cell Mol Biol 43: 368–375. 10.1165/rcmb.2009-0254OC
    1. Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, et al. (2011) Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 3: 78ra32 10.1126/scitranslmed.3002042
    1. Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA, et al. (2009) Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res 69: 2117–2125. 10.1158/0008-5472.CAN-08-3502
    1. Thejass P, Kuttan G (2006) Augmentation of natural killer cell and antibody-dependent cellular cytotoxicity in BALB/c mice by sulforaphane, a naturally occurring isothiocyanate from broccoli through enhanced production of cytokines IL-2 and IFN-gamma. Immunopharmacol Immunotoxicol 28: 443–457.
    1. Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, et al. (2007) The trafficking of natural killer cells. Immunol Rev 220: 169–182.
    1. Peng H, Tian Z (2014) NK cell trafficking in health and autoimmunity:a comprehensive review. Clin Rev Allergy Immunol 47: 119–127. 10.1007/s12016-013-8400-0
    1. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9: 503–510. 10.1038/ni1582
    1. Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71: 173–183.
    1. Horvath KM, Brighton LE, Herbst M, Noah TL, Jaspers I (2012) Live Attenuated Influenza Virus (LAIV) induces different mucosal T cell function in nonsmokers and smokers. Clin Immunol 142: 232–236. 10.1016/j.clim.2011.12.013
    1. Horvath KM, Herbst M, Zhou H, Zhang H, Noah TL, Jaspers I (2011) Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus. Respir Res 12: 102 10.1186/1465-9921-12-102
    1. Noah TL, Zhou H, Monaco J, Horvath K, Herbst M, Jaspers I (2011) Tobacco smoke exposure and altered nasal responses to live attenuated influenza virus. Environ Health Perspect 119: 78–83. 10.1289/ehp.1002258
    1. Muller L, Brighton LE, Jaspers I (2013) Ozone exposed epithelial cells modify cocultured natural killer cells. Am J Physiol Lung Cell Mol Physiol 304: L332–341. 10.1152/ajplung.00256.2012
    1. Muller L, Chehrazi CV, Henderson MW, Noah TL, Jaspers I (2013) Diesel exhaust particles modify natural killer cell function and cytokine release. Part Fibre Toxicol 10: 16 10.1186/1743-8977-10-16
    1. Paich HA, Sheridan PA, Handy J, Karlsson EA, Schultz-Cherry S, Hudgens MG, et al. (2013) Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza A virus. Obesity (Silver Spring) 21: 2377–2386.
    1. Amin PJ, Shankar BS (2015) Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci 126: 19–27. 10.1016/j.lfs.2015.01.026
    1. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1: 41–49.
    1. Wu CC, Chuang HY, Lin CY, Chen YJ, Tsai WH, Fang CY, et al. (2013) Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog 52: 946–958. 10.1002/mc.21926
    1. Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, et al. (2009) Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 179: 138–150. 10.1164/rccm.200804-535OC
    1. Fan X, Staitieh BS, Jensen JS, Mould KJ, Greenberg JA, Joshi PC, et al. (2013) Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats. Am J Physiol Lung Cell Mol Physiol 305: L267–277. 10.1152/ajplung.00288.2012
    1. He XS, Holmes TH, Zhang C, Mahmood K, Kemble GW, Lewis DB, et al. (2006) Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80: 11756–11766.
    1. He XS, Holmes TH, Mahmood K, Kemble GW, Dekker CL, Arvin AM, et al. (2008) Phenotypic changes in influenza-specific CD8+ T cells after immunization of children and adults with influenza vaccines. J Infect Dis 197: 803–811. 10.1086/528804
    1. Centers for Disease Control and Prevention (2009) Safety of influenza A (H1N1) 2009 monovalent vaccines—United States, October 1-November 24, 2009. MMWR Morb Mortal Wkly Rep 58: 1351–1356.
    1. Rudenko L, Kiseleva I, Naykhin AN, Erofeeva M, Stukova M, Donina S, et al. (2014) Assessment of human immune responses to H7 avian influenza virus of pandemic potential: results from a placebo-controlled, randomized double-blind phase I study of live attenuated H7N3 influenza vaccine. PLoS One 9: e87962 10.1371/journal.pone.0087962
    1. Dou Y, Fu B, Sun R, Li W, Hu W, Tian Z, et al. (2015) Influenza vaccine induces intracellular immune memory of human NK cells. PLoS One 10: e0121258 10.1371/journal.pone.0121258
    1. Pugh ND, Edwall D, Lindmark L, Kousoulas KG, Iyer AV, Haron MH, et al. (2015) Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A (H1N1) virus infection. Phytomedicine 22: 271–276. 10.1016/j.phymed.2014.12.006
    1. Pugh ND, Tamta H, Balachandran P, Wu X, Howell J, Dayan FE, et al. (2008) The majority of in vitro macrophage activation exhibited by extracts of some immune enhancing botanicals is due to bacterial lipoproteins and lipopolysaccharides. Int Immunopharmacol 8: 1023–1032. 10.1016/j.intimp.2008.03.007
    1. Nielsen CH, Balachandran P, Christensen O, Pugh ND, Tamta H, Sufka KJ, et al. (2010) Enhancement of natural killer cell activity in healthy subjects by Immulina(R), a Spirulina extract enriched for Braun-type lipoproteins. Planta Med 76: 1802–1808. 10.1055/s-0030-1250043

Source: PubMed

3
Abonner