Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia

Cornelis M van Tilburg, Till Milde, Ruth Witt, Jonas Ecker, Thomas Hielscher, Angelika Seitz, Jens-Peter Schenk, Juliane L Buhl, Dennis Riehl, Michael C Frühwald, Arnulf Pekrun, Claudia Rossig, Regina Wieland, Christian Flotho, Uwe Kordes, Bernd Gruhn, Thorsten Simon, Christin Linderkamp, Felix Sahm, Lenka Taylor, Angelika Freitag, Jürgen Burhenne, Kathrin I Foerster, Andreas D Meid, Stefan M Pfister, Irini Karapanagiotou-Schenkel, Olaf Witt, Cornelis M van Tilburg, Till Milde, Ruth Witt, Jonas Ecker, Thomas Hielscher, Angelika Seitz, Jens-Peter Schenk, Juliane L Buhl, Dennis Riehl, Michael C Frühwald, Arnulf Pekrun, Claudia Rossig, Regina Wieland, Christian Flotho, Uwe Kordes, Bernd Gruhn, Thorsten Simon, Christin Linderkamp, Felix Sahm, Lenka Taylor, Angelika Freitag, Jürgen Burhenne, Kathrin I Foerster, Andreas D Meid, Stefan M Pfister, Irini Karapanagiotou-Schenkel, Olaf Witt

Abstract

Background: Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3-18 years) with relapsed or therapy-refractory malignancies.

Results: A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m2/day with weekly dose escalations of 50 mg/m2 until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m2/day was determined (maximum, 580 mg/m2/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher Cmax. Five patients achieved prolonged disease control (> 12 months) and showed a higher Cmax (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome.

Conclusion: An SDR of 130 mg/m2/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker.

Trial registration: ClinicalTrials.gov, NCT01422499. Registered 24 August 2011.

Keywords: Child; Cytokine; Dose-response; HDAC; Intra-patient dose escalation; Vorinostat.

Conflict of interest statement

C.M.v.T. participated in Novartis and Bayer advisory boards.

C.R. participated in Amgen, Novartis, Pfizer, Roche, Genentech, Celgene, and SHIRE advisory boards.

J.B. received speech honoraria and travel support for scientific meetings from MSD Sharp & Dohme.

O.W. participated in AstraZeneca and Novartis advisory boards.

T.S. participated in Merck and EUSA Pharma advisory boards.

The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Patient disposition flow diagram. aNo treatment related deaths reported
Fig. 2
Fig. 2
Survival curves. a PFS, efficacy population (n = 27). b OS, efficacy population (n = 27). Including data after end of study. c Kaplan-Meier plot with separation for Cmax (ng/mL). PFS according to the optimal cutpoint at 270 ng/mL. Log-rank, p = 0.02 (exploratory analysis)
Fig. 3
Fig. 3
Low levels of cytokine expression at baseline define a cohort with favorable outcome. a Heat map of baseline concentrations (Gehan u-score). MTD group, < 280 = MTD reached was below 280 mg/m2, > = 280 = MTD reached was equal to or above 280 mg/m2, not reached = MTD was not reached; Best Response: PD: best response progressive disease; PR/SD: best response partial response or stable disease; not assessable: best response not assessable. b PFS and OS Kaplan-Meier plot according to cytokine cluster high and low. c PFS and OS Kaplan-Meier plot according to cytokine cluster high, intermediate (int), and low in cluster 2

References

    1. Bautista F, Di Giannatale A, Dias-Gastellier N, Fahd M, Valteau-Couanet D, Couanet D, Grill J, Brugieres L, Dufour C, Gaspar N, et al. Patients in pediatric phase I and early phase II clinical oncology trials at Gustave Roussy: a 13-year center experience. J Pediatr Hematol Oncol. 2015;37(2):e102–e110. doi: 10.1097/MPH.0000000000000237.
    1. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, Dimitrova N, Jakab Z, Kaatsch P, Lacour B, et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study. Lancet Oncol. 2014;15(1):35–47. doi: 10.1016/S1470-2045(13)70548-5.
    1. Vassal G, Rousseau R, Blanc P, Moreno L, Bode G, Schwoch S, Schrappe M, Skolnik J, Bergman L, Bradley-Garelik MB, et al. Creating a unique, multi-stakeholder Paediatric Oncology Platform to improve drug development for children and adolescents with cancer. Eur J Cancer. 2015;51(2):218–224. doi: 10.1016/j.ejca.2014.10.029.
    1. Moreno L, Pearson ADJ, Paoletti X, Jimenez I, Geoerger B, Kearns PR, Zwaan CM, Doz F, Baruchel A, Vormoor J, et al. Early phase clinical trials of anticancer agents in children and adolescents - an ITCC perspective. Nat Rev Clin Oncol. 2017;14(8):497–507. doi: 10.1038/nrclinonc.2017.59.
    1. Eckschlager Tomas, Plch Johana, Stiborova Marie, Hrabeta Jan. Histone Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular Sciences. 2017;18(7):1414. doi: 10.3390/ijms18071414.
    1. Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, et al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res. 2007;13(8):2318–2322. doi: 10.1158/1078-0432.CCR-06-2672.
    1. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26(9):1351–1356. doi: 10.1038/sj.onc.1210204.
    1. Burke MJ, Lamba JK, Pounds S, Cao X, Ghodke-Puranik Y, Lindgren BR, Weigel BJ, Verneris MR, Miller JS. A therapeutic trial of decitabine and vorinostat in combination with chemotherapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2014;89(9):889–895. doi: 10.1002/ajh.23778.
    1. DuBois SG, Groshen S, Park JR, Haas-Kogan DA, Yang X, Geier E, Chen E, Giacomini K, Weiss B, Cohn SL, et al. Phase I study of vorinostat as a radiation sensitizer with 131I-metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin Cancer Res. 2015;21(12):2715–2721. doi: 10.1158/1078-0432.CCR-14-3240.
    1. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623–3629. doi: 10.1200/JCO.2009.25.9119.
    1. Hummel TR, Wagner L, Ahern C, Fouladi M, Reid JM, McGovern RM, Ames MM, Gilbertson RJ, Horton T, Ingle AM, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer. 2013;60(9):1452–1457. doi: 10.1002/pbc.24541.
    1. Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, McGovern RM, Reid JM, Ames MM, Espinoza-Delgado I, Weigel BJ, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916) Pediatr Blood Cancer. 2013;60(3):390–395. doi: 10.1002/pbc.24271.
    1. Iwamoto M, Friedman EJ, Sandhu P, Agrawal NG, Rubin EH, Wagner JA. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor. Cancer Chemother Pharmacol. 2013;72(3):493–508. doi: 10.1007/s00280-013-2220-z.
    1. Pinto N, DuBois SG, Marachelian A, Diede SJ, Taraseviciute A, Glade Bender JL, Tsao-Wei D, Groshen SG, Reid JM, Haas-Kogan DA, et al. Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: a new approaches to Neuroblastoma Therapy (NANT) trial. Pediatr Blood Cancer. 2018;65(7):e27023. doi: 10.1002/pbc.27023.
    1. Scheer C, Kratz C, Witt O, Creutzig U, Reinhardt D, Klusmann JH. Hematologic response to vorinostat treatment in relapsed myeloid leukemia of down syndrome. Pediatr Blood Cancer. 2016;63(9):1677–1679. doi: 10.1002/pbc.26062.
    1. Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST, Maris JM, Reynolds CP, Gorlick R, Kolb EA, et al. Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer. 2009;53(3):505–508. doi: 10.1002/pbc.21988.
    1. Rettig I, Koeneke E, Trippel F, Mueller WC, Burhenne J, Kopp-Schneider A, Fabian J, Schober A, Fernekorn U, von Deimling A, et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis. 2015;6:e1657. doi: 10.1038/cddis.2015.24.
    1. Ecker J, Oehme I, Mazitschek R, Korshunov A, Kool M, Hielscher T, Kiss J, Selt F, Konrad C, Lodrini M, et al. Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathol Commun. 2015;3:22. doi: 10.1186/s40478-015-0201-7.
    1. Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol. 2005;23(17):3923–3931. doi: 10.1200/JCO.2005.14.167.
    1. Kelly WK, Richon VM, O'Connor O, Curley T, MacGregor-Curtelli B, Tong W, Klang M, Schwartz L, Richardson S, Rosa E, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res. 2003;9(10 Pt 1):3578–3588.
    1. Hull EE, Montgomery MR, Leyva KJ. HDAC Inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. Biomed Res Int. 2016;2016:8797206. doi: 10.1155/2016/8797206.
    1. Ogawa Y, Ogura M, Tobinai K, Ando K, Suzuki T, Watanabe T, Ohmachi K, Uchida T, Hanson ME, Tanaka Y, et al. A phase I study of vorinostat combined with bortezomib in Japanese patients with relapsed or refractory multiple myeloma. Int J Hematol. 2016;103(1):25–33. doi: 10.1007/s12185-015-1897-7.
    1. Ramalingam SS, Kummar S, Sarantopoulos J, Shibata S, LoRusso P, Yerk M, Holleran J, Lin Y, Beumer JH, Harvey RD, et al. Phase I study of vorinostat in patients with advanced solid tumors and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. J Clin Oncol. 2010;28(29):4507–4512. doi: 10.1200/JCO.2010.30.2307.
    1. Rubin EH, Agrawal NG, Friedman EJ, Scott P, Mazina KE, Sun L, Du L, Ricker JL, Frankel SR, Gottesdiener KM, et al. A study to determine the effects of food and multiple dosing on the pharmacokinetics of vorinostat given orally to patients with advanced cancer. Clin Cancer Res. 2006;12(23):7039–7045. doi: 10.1158/1078-0432.CCR-06-1802.
    1. Fakih MG, Fetterly G, Egorin MJ, Muindi JR, Espinoza-Delgado I, Zwiebel JA, Litwin A, Holleran JL, Wang K, Diasio RB. A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin Cancer Res. 2010;16(14):3786–3794. doi: 10.1158/1078-0432.CCR-10-0547.
    1. Williams MJ, Singleton WG, Lowis SP, Malik K, Kurian KM. Therapeutic targeting of histone modifications in adult and pediatric high-grade glioma. Front Oncol. 2017;7:45. doi: 10.3389/fonc.2017.00045.
    1. Hahnen E, Eyupoglu IY, Brichta L, Haastert K, Trankle C, Siebzehnrubl FA, Riessland M, Holker I, Claus P, Romstock J, et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem. 2006;98(1):193–202. doi: 10.1111/j.1471-4159.2006.03868.x.
    1. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A. 2003;100(4):2041–2046. doi: 10.1073/pnas.0437870100.
    1. Spiller SE, Ditzler SH, Pullar BJ, Olson JM. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA) J Neurooncol. 2008;87(2):133–141. doi: 10.1007/s11060-007-9505-1.
    1. Wang L. Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT et al: An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell. 2018;173(6):1413–1425. doi: 10.1016/j.cell.2018.04.012.
    1. Khan O, Fotheringham S, Wood V, Stimson L, Zhang C, Pezzella F, Duvic M, Kerr DJ, La Thangue NB. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci U S A. 2010;107(14):6532–6537. doi: 10.1073/pnas.0913912107.
    1. Yeo W, Chung HC, Chan SL, Wang LZ, Lim R, Picus J, Boyer M, Mo FK, Koh J, Rha SY, et al. Epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma: a multicenter phase I/II study with biomarker and pharmacokinetic analysis of tumors from patients in the Mayo Phase II Consortium and the Cancer Therapeutics Research Group. J Clin Oncol. 2012;30(27):3361–3367. doi: 10.1200/JCO.2011.41.2395.
    1. Pei Y, Liu KW, Wang J, Garancher A, Tao R, Esparza LA, Maier DL, Udaka YT, Murad N, Morrissy S, et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell. 2016;29(3):311–323. doi: 10.1016/j.ccell.2016.02.011.
    1. Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget. 2014;5(16):6558–6572. doi: 10.18632/oncotarget.2289.
    1. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA, Jr, Papadopoulos N, Kinzler KW, Vogelstein B, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111(32):11774–11779. doi: 10.1073/pnas.1410626111.
    1. Agarwala Sanjiv S., Moschos Stergios J., Johnson Melissa Lynne, Opyrchal Mateusz, Gabrilovich Dmitry, Danaher Patrick, Wang Fang, Brouwer Susan, Ordentlich Peter, Sankoh Serap, Schmidt Emmett V., Meyers Michael L., Sullivan Ryan J. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma progressing on or after a PD-1/L1 blocking antibody. Journal of Clinical Oncology. 2018;36(15_suppl):9530–9530. doi: 10.1200/JCO.2018.36.15_suppl.9530.
    1. Gandhi L, Janne PA, Opyrchal M, Ramalingam SS, Rybkin II, Hafez N. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with non-small cell lung cancer (NSCLC) previously treated with anti-PD-(L) 1 therapy. Journal of Clinical Oncology. 2018:36(15).
    1. Saltos Andreas Nicholas, Tanvetyanon Tawee, Williams Charles C., Haura Eric B., Creelan Ben C., Antonia Scott Joseph, Tchekmedyian Nishan, Goas Kristen, Mamplata Trevor, Thapa Ram, Chen Dung-Tsa, Beg Amer A., Gray Jhanelle Elaine. Phase I/Ib study of pembrolizumab and vorinostat in patients with metastatic NSCLC (mNSCLC) Journal of Clinical Oncology. 2018;36(15_suppl):9046–9046. doi: 10.1200/JCO.2018.36.15_suppl.9046.
    1. Pili R, Liu G, Chintala S, Verheul H, Rehman S, Attwood K, Lodge MA, Wahl R, Martin JI, Miles KM, et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. British Journal of Cancer. 2017;116(7):874–883. doi: 10.1038/bjc.2017.33.
    1. Oki Y, Buglio D, Fanale M, Fayad L, Copeland A, Romaguera J, Kwak LW, Pro B, de Castro FS, Neelapu S, et al. Phase I study of panobinostat plus everolimus in patients with relapsed or refractory lymphoma. Clin Cancer Res. 2013;19(24):6882–6890. doi: 10.1158/1078-0432.CCR-13-1906.
    1. Oki Y, Buglio D, Zhang J, Ying Y, Zhou S, Sureda A, Ben-Yehuda D, Zinzani PL, Prince HM, Harrison SJ, et al. Immune regulatory effects of panobinostat in patients with Hodgkin lymphoma through modulation of serum cytokine levels and T-cell PD1 expression. Blood Cancer J. 2014;4:e236. doi: 10.1038/bcj.2014.58.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Padhani AR, Ollivier L. The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol. 2001;74(887):983–986. doi: 10.1259/bjr.74.887.740983.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–216. doi: 10.1093/jnci/92.3.205.
    1. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–1477. doi: 10.1200/JCO.1993.11.8.1466.
    1. Liu L, Detering JC, Milde T, Haefeli WE, Witt O, Burhenne J. Quantification of vorinostat and its main metabolites in plasma and intracellular vorinostat in PBMCs by liquid chromatography coupled to tandem mass spectrometry and its relation to histone deacetylase activity in human blood. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:212–221. doi: 10.1016/j.jchromb.2014.02.014.
    1. Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, Ridinger J, Riehl D, Usta D, Ismer B, et al. The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res. 2018.
    1. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–474. doi: 10.1038/nature26000.
    1. Sahm F, Schrimpf D, Jones DT, Meyer J, Kratz A, Reuss D, Capper D, Koelsche C, Korshunov A, Wiestler B, et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016;131(6):903–910. doi: 10.1007/s00401-015-1519-8.
    1. Clopper C, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–413. doi: 10.1093/biomet/26.4.404.
    1. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86(11):829–835. doi: 10.1093/jnci/86.11.829.
    1. Helsel DR. Nondetects and data analysis: statistics for censored environmental data: John Wiley and Sons. New York: USA; 2005.

Source: PubMed

3
Abonner