Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial

Claudia Sommerer, Barbara Suwelack, Duska Dragun, Peter Schenker, Ingeborg A Hauser, Björn Nashan, Friedrich Thaiss, Claudia Sommerer, Barbara Suwelack, Duska Dragun, Peter Schenker, Ingeborg A Hauser, Björn Nashan, Friedrich Thaiss

Abstract

Background: Immunosuppression with calcineurin inhibitors remains the mainstay of treatment after kidney transplantation; however, long-term use of these drugs may be associated with nephrotoxicity. In this regard, the current approach is to optimise available immunosuppressive regimens to reduce the calcineurin inhibitor dose while protecting renal function without affecting the efficacy. The ATHENA study is designed to evaluate renal function in two regimens: an everolimus and reduced calcineurin inhibitor-based regimen versus a standard treatment protocol with mycophenolic acid and tacrolimus in de novo kidney transplant recipients.

Method/design: ATHENA is a 12-month, multicentre, open-label, prospective, randomised, parallel-group study in de novo kidney transplant recipients (aged 18 years or older) receiving renal allografts from deceased or living donors. Eligible patients are randomised (1:1:1) prior to transplantation to one of the following three treatment arms: everolimus (starting dose 1.5 mg/day; C0 3-8 ng/mL) with cyclosporine or everolimus (starting dose 3 mg/day; C0 3-8 ng/mL) with tacrolimus or mycophenolic acid (enteric-coated mycophenolate sodium at 1.44 g/day or mycophenolate mofetil at 2 g/day) with tacrolimus; in combination with corticosteroids. All patients receive induction therapy with basiliximab. The primary objective is to demonstrate non-inferiority of renal function (eGFR by the Nankivell formula) in one of the everolimus arms compared with the standard group at month 12 post transplantation. The key secondary objective is to assess the incidence of treatment failure, defined as biopsy-proven acute rejection, graft loss, or death, among the treatment groups. Other objectives include assessment of the individual components of treatment failure, incidence and severity of viral infections, incidence and duration of delayed graft function, incidence of indication biopsies, slow graft function and wound healing complications, and overall safety and tolerability. Exploratory objectives include evaluation of left ventricular hypertrophy assessed by the left ventricular mass index, evolution of human leukocyte antigen and non-human leukocyte antigen antibodies, and a cytomegalovirus substudy.

Discussion: As one of the largest European multicentre kidney transplant studies, ATHENA will determine whether a de novo everolimus-based regimen can preserve renal function versus the standard of care. This study further assesses a number of clinical issues which impact long-term outcomes post transplantation; hence, its results will have a major clinical impact.

Trial registration: Clinicaltrials.gov: NCT01843348, date of registration--18 April 2013; EUDRACT number: 2011-005238-21, date of registration--20 March 2012.

Figures

Fig. 1
Fig. 1
Study design. Steroid dose will be at least 5 mg prednisolone or equivalent, according to centre practice. EC-MPS enteric-coated mycophenolate sodium. M month, MMF mycophenolate mofetil, MPA mycophenolic acid, RND randomisation, Tx transplantation

References

    1. Matas AJ, Smith JM, Skeans MA, Thompson B, Gustafson SK, Schnitzler MA, et al. OPTN/SRTR 2012 annual data report: kidney. Am J Transplant. 2014;14(Suppl 1):11–44. doi: 10.1111/ajt.12579.
    1. Gondos A, Dohler B, Brenner H, Opelz G. Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation. 2013;95:267–74. doi: 10.1097/TP.0b013e3182708ea8.
    1. Chapman JR. Chronic calcineurin inhibitor nephrotoxicity – lest we forget. Am J Transplant. 2011;11:693–7. doi: 10.1111/j.1600-6143.2011.03504.x.
    1. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349:931–40. doi: 10.1056/NEJMoa021744.
    1. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR, Allen RD. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78:557–65. doi: 10.1097/01.TP.0000128636.70499.6E.
    1. Australia and New Zealand Dialysis and Transplant Registry 35th annual report 2012. . Accessed 31 May 2015.
    1. Sharif A, Shabir S, Chand S, Cockwell P, Ball S, Borrows R. Meta-analysis of calcineurin-inhibitor-sparing regimens in kidney transplantation. J Am Soc Nephrol. 2011;22:2107–18. doi: 10.1681/ASN.2010111160.
    1. Chadban S, Morris R, Hirsch HH, Bunnapradist S, Arns W, Budde K. Immunosuppression in renal transplantation: some aspects for the modern era. Transplant Rev (Orlando) 2008;22:241–51. doi: 10.1016/j.trre.2008.05.003.
    1. Nashan B, Curtis J, Ponticelli C, Mourad G, Jaffe J, Haas T. Everolimus and reduced-exposure cyclosporine in de novo renal-transplant recipients: a three-year phase II, randomized, multicenter, open-label study. Transplantation. 2004;78:1332–40. doi: 10.1097/01.TP.0000140486.97461.49.
    1. Vitko S, Margreiter R, Weimar W, Dantal J, Viljoen HG, Li Y, et al. Everolimus (Certican) 12-month safety and efficacy versus mycophenolate mofetil in de novo renal transplant recipients. Transplantation. 2004;78:1532–40. doi: 10.1097/01.TP.0000141094.34903.54.
    1. Vitko S, Margreiter R, Weimar W, Dantal J, Kuypers D, Winkler M, et al. Three-year efficacy and safety results from a study of everolimus versus mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2005;5:2521–30. doi: 10.1111/j.1600-6143.2005.01063.x.
    1. Lorber MI, Mulgaonkar S, Butt KM, Elkhammas E, Mendez R, Rajagopalan PR, et al. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation. 2005;80:244–52. doi: 10.1097/01.TP.0000164352.65613.24.
    1. Vitko S, Tedesco H, Eris J, Pascual J, Whelchel J, Magee JC, et al. Everolimus with optimized cyclosporine dosing in renal transplant recipients: 6-month safety and efficacy results of two randomized studies. Am J Transplant. 2004;4:626–35. doi: 10.1111/j.1600-6143.2004.00389.x.
    1. Tedesco-Silva H, Jr, Vitko S, Pascual J, Eris J, Magee JC, Whelchel J, et al. 12-month safety and efficacy of everolimus with reduced exposure cyclosporine in de novo renal transplant recipients. Transpl Int. 2007;20:27–36. doi: 10.1111/j.1432-2277.2006.00414.x.
    1. Chan L, Greenstein S, Hardy MA, Hartmann E, Bunnapradist S, Cibrik D, et al. Multicenter, randomized study of the use of everolimus with tacrolimus after renal transplantation demonstrates its effectiveness. Transplantation. 2008;85:821–6. doi: 10.1097/TP.0b013e318166927b.
    1. Tedesco SH, Jr, Cibrik D, Johnston T, Lackova E, Mange K, Panis C, et al. Everolimus plus reduced-exposure CsA versus mycophenolic acid plus standard-exposure CsA in renal-transplant recipients. Am J Transplant. 2010;10:1401–13. doi: 10.1111/j.1600-6143.2010.03129.x.
    1. Cibrik D, Silva HT, Jr, Vathsala A, Lackova E, Cornu-Artis C, Walker RG, et al. Randomized trial of everolimus-facilitated calcineurin inhibitor minimization over 24 months in renal transplantation. Transplantation. 2013;95:933–42. doi: 10.1097/TP.0b013e3182848e03.
    1. Budde K, Becker T, Arns W, Sommerer C, Reinke P, Eisenberger U, et al. Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet. 2011;377:837–47. doi: 10.1016/S0140-6736(10)62318-5.
    1. Budde K, Lehner F, Sommerer C, Reinke P, Arns W, Eisenberger U, et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant. 2015;15:119–28. doi: 10.1111/ajt.12952.
    1. Albano L, Berthoux F, Moal MC, Rostaing L, Legendre C, Genin R, et al. Incidence of delayed graft function and wound healing complications after deceased-donor kidney transplantation is not affected by de novo everolimus. Transplantation. 2009;88:69–76. doi: 10.1097/TP.0b013e3181aa7d87.
    1. Dantal J, Berthoux F, Moal MC, Rostaing L, Legendre C, Genin R, et al. Efficacy and safety of de novo or early everolimus with low cyclosporine in deceased-donor kidney transplant recipients at specified risk of delayed graft function: 12-month results of a randomized, multicenter trial. Transpl Int. 2010;23:1084–93. doi: 10.1111/j.1432-2277.2010.01094.x.
    1. Novoa PA, Grinyo JM, Ramos FJ, Errasti P, Franco A, Aldana G, et al. De novo use of everolimus with elimination or minimization of cyclosporine in renal transplant recipients. Transplant Proc. 2011;43:3331–9. doi: 10.1016/j.transproceed.2011.10.032.
    1. Langer RM, Hene R, Vitko S, Christiaans M, Tedesco-Silva H, Jr, Ciechanowski K, et al. Everolimus plus early tacrolimus minimization: a phase III, randomized, open-label, multicentre trial in renal transplantation. Transpl Int. 2012;25:592–602. doi: 10.1111/j.1432-2277.2012.01465.x.
    1. Budde K, Rath T, Sommerer C, Haller H, Reinke P, Witzke O, et al. Renal, efficacy and safety outcomes following late conversion of kidney transplant patients from calcineurin inhibitor therapy to everolimus: the randomized APOLLO study. Clin Nephrol. 2015;83:11–21. doi: 10.5414/CN108444.
    1. Budde K, Sommerer C, Rath T, Reinke P, Haller H, Witzke O, et al. Renal function to 5 years after late conversion of kidney transplant patients to everolimus: a randomized trial. J Nephrol. 2015;28:115–23. doi: 10.1007/s40620-014-0134-4.
    1. Salvadori M, Scolari MP, Bertoni E, Citterio F, Rigotti P, Cossu M, et al. Everolimus with very low-exposure cyclosporine a in de novo kidney transplantation: a multicenter, randomized, controlled trial. Transplantation. 2009;88:1194–202. doi: 10.1097/TP.0b013e3181bb43ec.
    1. Ponticelli C, Salvadori M, Scolari MP, Citterio F, Rigotti P, Veneziano A, et al. Everolimus and minimization of cyclosporine in renal transplantation: 24-month follow-up of the EVEREST study. Transplantation. 2011;91:e72–e3. doi: 10.1097/TP.0b013e318216c1db.
    1. Takahashi K, Uchida K, Yoshimura N, Takahara S, Teraoka S, Teshima R, et al. Efficacy and safety of concentration-controlled everolimus with reduced-dose cyclosporine in Japanese de novo renal transplant patients: 12-month results. Transplant Res. 2013;2:14. doi: 10.1186/2047-1440-2-14.
    1. Holdaas H, Rostaing L, Seron D, Cole E, Chapman J, Fellstrom B, et al. Conversion of long-term kidney transplant recipients from calcineurin inhibitor therapy to everolimus: a randomized, multicenter, 24-month study. Transplantation. 2011;92:410–8. doi: 10.1097/TP.0b013e318224c12d.
    1. Chadban SJ, Eris JM, Kanellis J, Pilmore H, Lee PC, Lim SK, et al. A randomized, controlled trial of everolimus-based dual immunosuppression versus standard of care in de novo kidney transplant recipients. Transpl Int. 2014;27:302–11. doi: 10.1111/tri.12252.
    1. Bemelman FJ. de Maar EF, Press RR, van Kan HJ, ten Berge IJ, Homan van der Heide JJ, et al. Minimization of maintenance immunosuppression early after renal transplantation: an interim analysis. Transplantation. 2009;88:421–8. doi: 10.1097/TP.0b013e3181af1df6.
    1. Mjörnstedt L, Sorensen SS, von Zur MB, Jespersen B, Hansen JM, Bistrup C, et al. Improved renal function after early conversion from a calcineurin inhibitor to everolimus: a randomized trial in kidney transplantation. Am J Transplant. 2012;12:2744–53. doi: 10.1111/j.1600-6143.2012.04162.x.
    1. Nashan B. Induction therapy and mTOR inhibition: minimizing calcineurin inhibitor exposure in de novo renal transplant patients. Clin Transplant. 2013;27:16–29. doi: 10.1111/ctr.12156.
    1. Paoletti E, Marsano L, Bellino D, Cassottana P, Cannella G. Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation. 2012;93:503–8. doi: 10.1097/TP.0b013e318242be28.
    1. Eisen H. Long-term cardiovascular risk in transplantation – insights from the use of everolimus in heart transplantation. Nephrol Dial Transplant. 2006;21 Suppl 3:iii9–13.
    1. Eisen HJ, Kobashigawa J, Starling RC, Pauly DF, Kfoury A, Ross H, et al. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transplant. 2013;13:1203–16. doi: 10.1111/ajt.12181.
    1. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–56. doi: 10.1016/S0140-6736(08)61039-9.
    1. Euvrard S, Boissonnat P, Roussoulieres A, Kanitakis J, Decullier E, Claudy A, et al. Effect of everolimus on skin cancers in calcineurin inhibitor-treated heart transplant recipients. Transpl Int. 2010;23:855–7. doi: 10.1111/j.1432-2277.2009.01010.x.
    1. Nashan B. Maximizing the clinical outcome with mTOR inhibitors in the renal transplant recipient: defining the role of calcineurin inhibitors. Transpl Int. 2004;17:279–85. doi: 10.1111/j.1432-2277.2004.tb00444.x.
    1. Nashan B, Gaston R, Emery V, Saemann MD, Mueller NJ, Couzi L, et al. Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation. 2012;93:1075–85. doi: 10.1097/TP.0b013e31824810e6.
    1. Brennan DC, Legendre C, Patel D, Mange K, Wiland A, McCague K, et al. Cytomegalovirus incidence between everolimus versus mycophenolate in de novo renal transplants: pooled analysis of three clinical trials. Am J Transplant. 2011;11:2453–62. doi: 10.1111/j.1600-6143.2011.03674.x.
    1. Nankivell BJ, Gruenewald SM, Allen RD, Chapman JR. Predicting glomerular filtration rate after kidney transplantation. Transplantation. 1995;59:1683–9. doi: 10.1097/00007890-199506270-00007.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. doi: 10.1159/000180580.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Rodrigo E, Fernandez-Fresnedo G, Ruiz JC, Pinera C, Heras M, de Francisco AL, et al. Assessment of glomerular filtration rate in transplant recipients with severe renal insufficiency by Nankivell, Modification of Diet in Renal Disease (MDRD), and Cockcroft-Gault equations. Transplant Proc. 2003;35:1671–2. doi: 10.1016/S0041-1345(03)00625-0.
    1. Pierrat A, Gravier E, Saunders C, Caira MV, Ait-Djafer Z, Legras B, et al. Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and modification of diet in renal disease formulas. Kidney Int. 2003;64:1425–36. doi: 10.1046/j.1523-1755.2003.00208.x.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8. doi: 10.1016/0002-9149(86)90771-X.
    1. Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes J, 3rd, et al. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham Study. Circulation. 1987;75:I26–33.
    1. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–33. doi: 10.1016/j.echo.2008.11.023.
    1. Nashan B, Citterio F, et al. Wound healing complications and the use of mammalian target of rapamycin inhibitors in kidney transplantation: a critical review of the literature. Transplantation. 2012;94:547–61. doi: 10.1097/TP.0b013e3182551021.

Source: PubMed

3
Abonner