The effects of positive end-expiratory pressure on cardiac function: a comparative echocardiography-conductance catheter study

David Berger, Olivier Wigger, Stefano de Marchi, Martin R Grübler, Andreas Bloch, Reto Kurmann, Odile Stalder, Kaspar Felix Bachmann, Stefan Bloechlinger, David Berger, Olivier Wigger, Stefano de Marchi, Martin R Grübler, Andreas Bloch, Reto Kurmann, Odile Stalder, Kaspar Felix Bachmann, Stefan Bloechlinger

Abstract

Background: Echocardiographic parameters of diastolic function depend on cardiac loading conditions, which are altered by positive pressure ventilation. The direct effects of positive end-expiratory pressure (PEEP) on cardiac diastolic function are unknown.

Methods: Twenty-five patients without apparent diastolic dysfunction undergoing coronary angiography were ventilated noninvasively at PEEPs of 0, 5, and 10 cmH2O (in randomized order). Echocardiographic diastolic assessment and pressure-volume-loop analysis from conductance catheters were compared. The time constant for pressure decay (τ) was modeled with exponential decay. End-diastolic and end-systolic pressure volume relationships (EDPVRs and ESPVRs, respectively) from temporary caval occlusion were analyzed with generalized linear mixed-effects and linear mixed models. Transmural pressures were calculated using esophageal balloons.

Results: τ values for intracavitary cardiac pressure increased with the PEEP (n = 25; no PEEP, 44 ± 5 ms; 5 cmH2O PEEP, 46 ± 6 ms; 10 cmH2O PEEP, 45 ± 6 ms; p < 0.001). This increase disappeared when corrected for transmural pressure and diastole length. The transmural EDPVR was unaffected by PEEP. The ESPVR increased slightly with PEEP. Echocardiographic mitral inflow parameters and tissue Doppler values decreased with PEEP [peak E wave (n = 25): no PEEP, 0.76 ± 0.13 m/s; 5 cmH2O PEEP, 0.74 ± 0.14 m/s; 10 cmH2O PEEP, 0.68 ± 0.13 m/s; p = 0.016; peak A wave (n = 24): no PEEP, 0.74 ± 0.12 m/s; 5 cmH2O PEEP, 0.7 ± 0.11 m/s; 10 cmH2O PEEP, 0.67 ± 0.15 m/s; p = 0.014; E' septal (n = 24): no PEEP, 0.085 ± 0.016 m/s; 5 cmH2O PEEP, 0.08 ± 0.013 m/s; 10 cmH2O PEEP, 0.075 ± 0.012 m/s; p = 0.002].

Conclusions: PEEP does not affect active diastolic relaxation or passive ventricular filling properties. Dynamic echocardiographic filling parameters may reflect changing loading conditions rather than intrinsic diastolic function. PEEP may have slight positive inotropic effects.

Clinical trial registration: https://ichgcp.net/clinical-trials-registry/NCT02267291 , registered 17. October 2014.

Keywords: Diastolic function; Echocardiography; End-diastolic pressure; End-systolic pressure; Mechanical ventilation; Positive end-expiratory pressure; Volume relationship.

Conflict of interest statement

The Department of Intensive Care Medicine of the Inselspital has, or has had in the past, research contracts with Abionic SA, AVA AG, CSEM SA, Cube Dx GmbH, Cyto Sorbents Europe GmbH, Edwards Lifesciences LLC, GE Healthcare, ImaCor Inc., MedImmune LLC, Orion Corporation, and Phagenesis Ltd.; and research and development/consulting contracts with Edwards Lifesciences LLC, Nestec SA, and Wyss Zurich. The money was paid into a departmental fund; Drs. Berger, Bloch, and Bachmann received no personal financial gain and declare that they have no personal conflict of interest. The Department of Intensive Care Medicine of the Inselspital has received unrestricted educational grants from the following entities for the organization of a quarterly postgraduate educational symposium, the Berner Forum for Intensive Care (until 2015): Abbott AG, Anandic Medical Systems, Astellas, AstraZeneca, Bard Medica SA, Baxter, B | Braun, CSL Behring, Covidien, Fresenius Kabi, GSK, Lilly, Maquet, MSD, Novartis, Nycomed, Orion Pharma, Pfizer, and Pierre Fabre Pharma AG (formerly known as RobaPharm). It has received unrestricted educational grants from the following entities for the organization of biannual postgraduate courses in the fields of critical care ultrasound and the management of ECMO and mechanical ventilation: Abbott AG, Anandic Medical Systems, Bard Medica SA., Bracco, Dräger Schweiz AG, Edwards Lifesciences AG, Fresenius Kabi (Schweiz) AG, Getinge Group Maquet AG, Hamilton Medical AG, Pierre Fabre Pharma AG (formerly known as RobaPharm), PanGas AG Healthcare, Pfizer AG, Orion Pharma, and Teleflex Medical GmbH. Drs. Bloechlinger, Wigger, De Marchi, Kurmann, Stalder, and Grübler have no conflict of interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Exemplary loop family from a caval occlusion maneuver with the INCA device, recorded at a PEEP level of 10 cmH2O. The loop family corresponds to the echocardiography shown in Fig. 5
Fig. 2
Fig. 2
Mean left (a) and left transmural (b) ventricular pressures following an exponential decay model during isovolumetric relaxation, with 95% confidence intervals as dashed lines, resampled for 35 samples (140 ms). All data from all patients are included. PEEP, positive end-expiratory pressure
Fig. 3
Fig. 3
a Left ventricular filling curves represented by diastolic ventricular pressure and PAOP, with 95% confidence intervals as dashed lines. The data were resampled for a filling period of 125 samples (500 ms). The dotted lines for early, mid- and late diastolic data points indicate the data presented in Table 4. b Transmural left ventricular filling curves Means with 95% confidence intervals as dashed lines are presented. The data were resampled to a filling period of 125 samples (500 ms). The dotted lines for early, mid- and late diastolic data points. PAOP pulmonary-artery occlusal pressure, LVP left ventricular pressure, PEEP positive end-expiratory pressure
Fig. 4
Fig. 4
a End-systolic pressure–volume relationships (ESPVRs) for 0, 5, and 10 cmH2O PEEP, according to the mixed linear model equations in Table 4. The equation values are reported at the mean centered volume (50.4 ml), indicated by the dotted line. b End-diastolic pressure–volume relationships (EDPVRs), according to the mixed-effect generalized linear model equations in Table 7. The equation values are reported at the mean centered volume (136.2 ml), indicated by the dotted line. PEEP positive end-expiratory pressure
Fig. 5
Fig. 5
Exemplary echocardiography tracings at a PEEP level of 10 cm H2O. The frames that correspond to the PV-Loop family in Fig. 1 are shown. The left panel shows a transmitral pulsed wave Doppler trace, the right panel a tissue Doppler tracing

References

    1. Vieillard-Baron A, Millington SJ, Sanfilippo F, Chew M, Diaz-Gomez J, McLean A, Pinsky MR, Pulido J, Mayo P, Fletcher N. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med. 2019;45(6):770–788. doi: 10.1007/s00134-019-05604-2.
    1. Mayo P, Arntfield R, Balik M, Kory P, Mathis G, Schmidt G, Slama M, Volpicelli G, Xirouchaki N, McLean A, et al. The ICM research agenda on critical care ultrasonography. Intensive Care Med. 2017;43(9):1257–1269. doi: 10.1007/s00134-017-4734-z.
    1. Papanikolaou J, Makris D, Saranteas T, Karakitsos D, Zintzaras E, Karabinis A, Kostopanagiotou G, Zakynthinos E. New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player. Intensive Care Med. 2011;37:1976. doi: 10.1007/s00134-011-2368-0.
    1. Lamia B, Maizel J, Ochagavia A, Chemla D, Osman D, Richard C, Teboul JL. Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med. 2009;37(5):1696–1701. doi: 10.1097/CCM.0b013e31819f13d0.
    1. Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care (London, England) 2010;14(3):R120. doi: 10.1186/cc9076.
    1. Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic Echocardiography with Doppler Tissue Imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care (London, England) 2012;16(3):R81. doi: 10.1186/cc11339.
    1. Saleh M, Vieillard-Baron A. On the role of left ventricular diastolic function in the critically ill patient. Intensive Care Med. 2012;38(2):189–191. doi: 10.1007/s00134-011-2448-1.
    1. Routsi C, Stanopoulos I, Kokkoris S, Sideris A, Zakynthinos S. Weaning failure of cardiovascular origin: how to suspect, detect and treat-a review of the literature. Ann Intensive Care. 2019;9(1):6. doi: 10.1186/s13613-019-0481-3.
    1. Maurer MS, Spevack D, Burkhoff D, Kronzon I. Diastolic dysfunction: can it be diagnosed by Doppler echocardiography? J Am Coll Cardiol. 2004;44(8):1543–1549. doi: 10.1016/j.jacc.2004.07.034.
    1. Aurigemma GP, Zile MR, Gaasch WH. Lack of relationship between Doppler indices of diastolic function and left ventricular pressure transients in patients with definite diastolic heart failure. Am Heart J. 2004;148(3):E12. doi: 10.1016/j.ahj.2004.01.022.
    1. Grubler MR, Wigger O, Berger D, Blochlinger S. Basic concepts of heart-lung interactions during mechanical ventilation. Swiss Med Week. 2017;147:14491.
    1. Pinsky MR, Matuschak GM, Klain M. Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol (Bethesda, Md: 1985) 1985;58(4):1189–1198. doi: 10.1152/jappl.1985.58.4.1189.
    1. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91(6):1725–1731. doi: 10.1161/01.CIR.91.6.1725.
    1. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol (Bethesda, Md: 1985) 1999;87(5):1644–1650. doi: 10.1152/jappl.1999.87.5.1644.
    1. Juhl-Olsen P, Frederiksen CA, Hermansen JF, Jakobsen CJ, Sloth E. Echocardiographic measures of diastolic function are preload dependent during triggered positive pressure ventilation: a controlled crossover study in healthy subjects. Crit Care Res Pract. 2012;2012:703196.
    1. Juhl-Olsen P, Hermansen JF, Frederiksen CA, Rasmussen LA, Jakobsen CJ, Sloth E. Positive end-expiratory pressure influences echocardiographic measures of diastolic function: a randomized, crossover study in cardiac surgery patients. Anesthesiology. 2013;119(5):1078–1086. doi: 10.1097/ALN.0b013e3182a10b40.
    1. Quintard H, Muller L, Philip I, Lena P, Ichai C. Influence of acute preload changes on mitral annulus velocity measured by tissue Doppler echocardiography in critically ill patients. J Clin Ultrasound. 2012;40(7):419–423. doi: 10.1002/jcu.21882.
    1. Fewell JE, Abendschein DR, Carlson CJ, Rapaport E, Murray JF. Continuous positive-pressure ventilation does not alter ventricular pressure-volume relationship. Am J Physiol. 1981;240(6):H821–826.
    1. Haynes JB, Carson SD, Whitney WP, Zerbe GO, Hyers TM, Steele P. Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(4):670–676.
    1. Berger D, Bloechlinger S, Takala J, Sinderby C, Brander L. Heart-lung interactions during neurally adjusted ventilatory assist. Crit Care (London, England) 2014;18(5):499. doi: 10.1186/s13054-014-0499-8.
    1. Berger D, Takala J. Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med. 2018;6(18):350. doi: 10.21037/atm.2018.05.27.
    1. LaFarge CG, Miettinen OS. The estimation of oxygen consumption1. Cardiovasc Res. 1970;4(1):23–30. doi: 10.1093/cvr/4.1.23.
    1. Steendijk P, Staal E, Jukema JW, Baan J. Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am J Physiol Heart Circ Physiol. 2001;281(2):H755–763. doi: 10.1152/ajpheart.2001.281.2.H755.
    1. Chiumello D, Gallazzi E, Marino A, Berto V, Mietto C, Cesana B, Gattinoni L. A validation study of a new nasogastric polyfunctional catheter. Intensive Care Med. 2011;37(5):791–795. doi: 10.1007/s00134-011-2178-4.
    1. Berger D, Moller PW, Weber A, Bloch A, Bloechlinger S, Haenggi M, Sondergaard S, Jakob SM, Magder S, Takala J. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794–806. doi: 10.1152/ajpheart.00931.2015.
    1. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982;126(5):788–791.
    1. Baydur A, Cha EJ, Sassoon CS. Validation of esophageal balloon technique at different lung volumes and postures. J Appl Physiol. 1987;62(1):315–321. doi: 10.1152/jappl.1987.62.1.315.
    1. Ogilvie LM, Edgett BA, Huber JS, Platt MJ, Eberl HJ, Lutchmedial S, Brunt KR, Simpson JA. Hemodynamic assessment of diastolic function for experimental models. Am J Physiol Heart Circ Physiol. 2020;318(5):H1139–h1158. doi: 10.1152/ajpheart.00705.2019.
    1. Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol. 2005;289(2):H501–512. doi: 10.1152/ajpheart.00138.2005.
    1. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007;116(6):637–647. doi: 10.1161/CIRCULATIONAHA.106.661983.
    1. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102(15):1788–1794. doi: 10.1161/01.CIR.102.15.1788.
    1. Moller PW, Winkler B, Hurni S, Heinisch PP, Bloch A, Sondergaard S, Jakob SM, Takala J, Berger D. Right atrial pressure and venous return during cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2017;313(2):H408–h420. doi: 10.1152/ajpheart.00081.2017.
    1. Frederiksen JW, Weiss JL, Weisfeldt ML. Time constant of isovolumic pressure fall: determinants in the working left ventricle. Am J Physiol. 1978;235(6):H701–706.
    1. Shen W, Xu X, Lee T-F, Schmölzer G, Cheung P-Y (2019) The relationship between heart rate and left ventricular isovolumic relaxation during normoxia and hypoxia-asphyxia in newborn piglets. Front Physiol 10(525)
    1. Weiss JL, Frederiksen JW, Weisfeldt ML. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Investig. 1976;58(3):751–760. doi: 10.1172/JCI108522.
    1. Repessé X, Vieillard-Baron A, Geri G. Value of measuring esophageal pressure to evaluate heart-lung interactions-applications for invasive hemodynamic monitoring. Ann Transl Med. 2018;6(18):351. doi: 10.21037/atm.2018.05.04.
    1. Pinsky MR. Why knowing the effects of positive-pressure ventilation on venous, pleural, and pericardial pressures is important to the bedside clinician?*. Crit Care Med. 2014;42(9):2129–2131. doi: 10.1097/CCM.0000000000000364.
    1. Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, Mojoli F, Chiumello D, Piquilloud L, Grasso S, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–1373. doi: 10.1007/s00134-016-4400-x.
    1. Kasner M, Westermann D, Steendijk P, Drose S, Poller W, Schultheiss HP, Tschope C. Left ventricular dysfunction induced by nonsevere idiopathic pulmonary arterial hypertension: a pressure-volume relationship study. Am J Respir Crit Care Med. 2012;186(2):181–189. doi: 10.1164/rccm.201110-1860OC.
    1. Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–260. doi: 10.1097/MCC.0b013e3283532b73.
    1. Tyberg JV, Misbach GA, Glantz SA, Moores WY, Parmley WW. A mechanism for shifts in the diastolic, left ventricular, pressure-volume curve: the role of the pericardium. Eur J Cardiol. 1978;7(Suppl):163–175.
    1. Veddeng OJ, Myhre ES, Risøe C, Smiseth OA. Selective positive end-expiratory pressure and intracardiac dimensions in dogs. J Appl Physiol (Bethesda, Md: 1985) 1992;73(5):2016–2020. doi: 10.1152/jappl.1992.73.5.2016.
    1. Fessler HE, Brower RG, Wise R, Permutt S. Positive pleural pressure decreases coronary perfusion. Am J Physiol. 1990;258(3 Pt 2):H814–820.
    1. Cingolani HE, Perez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol. 2013;304(2):H175–182. doi: 10.1152/ajpheart.00508.2012.
    1. Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J-C, Ward M-L. The slow force response to stretch: controversy and contradictions. Acta Physiol. 2019;226(1):e13250. doi: 10.1111/apha.13250.
    1. D'Elia E, Ferrero P, Vittori C, Iacovoni A, Grosu A, Gori M, Duino V, Perlini S, Senni M. Beneficial effects of adaptive servo-ventilation on natriuretic peptides and diastolic function in acute heart failure patients with preserved ejection fraction and sleep-disordered breathing. Sleep Breath. 2019;23(1):287–291. doi: 10.1007/s11325-018-1681-z.
    1. Masa JF, Mokhlesi B, Benítez I, Mogollon MV, Gomez de Terreros FJ, Sánchez-Quiroga M, Romero A, Caballero-Eraso C, Alonso-Álvarez ML, Ordax-Carbajo E, et al. Echocardiographic changes with positive airway pressure therapy in obesity hypoventilation syndrome. Long-term pickwick randomized controlled clinical trial. Am J Respir Crit Care Med. 2020;201(5):586–597. doi: 10.1164/rccm.201906-1122OC.
    1. Jansen JR. The thermodilution method for the clinical assessment of cardiac output. Intensive Care Med. 1995;21(8):691–697. doi: 10.1007/BF01711553.

Source: PubMed

3
Abonner