Disease Activity and Conversion into Multiple Sclerosis after Optic Neuritis Is Treated with Erythropoietin

Kurt-Wolfram Sühs, Panagiotis Papanagiotou, Katharina Hein, Refik Pul, Kerstin Scholz, Christoph Heesen, Ricarda Diem, Kurt-Wolfram Sühs, Panagiotis Papanagiotou, Katharina Hein, Refik Pul, Kerstin Scholz, Christoph Heesen, Ricarda Diem

Abstract

Changes in cerebral lesion load by magnetic resonance imaging (MRI) in patients from a double-blind, placebo-controlled, phase II study on erythropoietin in clinically isolated optic neuritis (ClinicalTrials.gov, NCT00355095) were analyzed. Therefore, patients with acute optic neuritis were assigned to receive either 33,000 IU of recombinant human erythropoietin (IV) daily for three days, or a placebo, as an add-on to methylprednisolone. Of 35 patients, we investigated changes in cerebral lesion load in MRIs obtained at baseline and at weeks 4, 8, and 16. In 5 of the 35 patients, we found conversion into multiple sclerosis (MS) based on MRI progression only. These five patients had received the placebo. Another five patients showed MRI progression together with relapses. Three of these patients had received erythropoietin, and two the placebo. Yet, analyzing the change in absolute numbers of periventricular, juxtacortical, and infratentorial lesions including gadolinium-enhancing lesions, there were no significant differences between the groups. Although effective in terms of retinal nerve fiber layer protection, erythropoietin treatment of acute isolated optic neuritis did not influence further evolution of MRI lesions in the brain when comparing absolute numbers. However, early conversion from clinically isolated syndrome to MS assessed by MRI activity seemed to occur more frequently in the placebo-treated group.

Keywords: MRI; clinical trial; multiple sclerosis; optic nerve.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cranial MRI lesion load. Mean T2 lesion load aligned by lesion site and gandolinium enhancing lesions at different time points. Empty bars = erythropoietin; black bars= placebo; error bars = SEM.

References

    1. Suhs K.W., Hein K., Sattler M.B., Gorlitz A., Ciupka C., Scholz K., Käsmann-Kellner B., Papanagiotou P., Schäffler N., Restemeyer C., et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann. Neurol. 2012;72:199–210. doi: 10.1002/ana.23573.
    1. Henderson A.P., Altmann D.R., Trip A.S., Kallis C., Jones S.J., Schlottmann P.G., Garway-Heath D.F., Plant G.T., Miller D.H. A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain. 2010;133:2592–2602. doi: 10.1093/brain/awq146.
    1. Frohman E.M., Filippi M., Stuve O., Waxman S.G., Corboy J., Phillips J.T., Lucchinetti C., Wilken J., Karandikar N., Hemmer B., et al. Characterizing the mechanisms of progression in multiple sclerosis: Evidence and new hypotheses for future directions. Arch. Neurol. 2005;62:1345–1356. doi: 10.1001/archneur.62.9.1345.
    1. Gordon-Lipkin E., Chodkowski B., Reich D.S., Smith S.A., Pulicken M., Balcer L.J., Frohman E.M., Cutter G., Calabresi P.A. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69:1603–1609. doi: 10.1212/.
    1. Sattler M.B., Merkler D., Maier K., Stadelmann C., Ehrenreich H., Bahr M., Diem R. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ. 2004;11:S181–S192. doi: 10.1038/sj.cdd.4401504.
    1. Davies A.L., Desai R.A., Bloomfield P.S., McIntosh P.R., Chapple K.J., Linington C., Fairless R., Diem R., Kasti M., Murphy M.P., et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 2013;74:815–825. doi: 10.1002/ana.24006.
    1. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366.
    1. Ormerod I.E., McDonald W.I., du Boulay G.H., Kendall B.E., Moseley I.F., Halliday A.M., Kakigi R., Kriss A., Peringer E. Disseminated lesions at presentation in patients with optic neuritis. J. Neurol. Neurosurg. Psychiatry. 1986;49:124–127. doi: 10.1136/jnnp.49.2.124.
    1. Miller D.H., Ormerod I.E., McDonald W.I., MacManus D.G., Kendall B.E., Kingsley D.P., Moseley I.F. The early risk of multiple sclerosis after optic neuritis. J. Neurol. Neurosurg. Psychiatry. 1988;51:1569–1571. doi: 10.1136/jnnp.51.12.1569.
    1. O’Riordan J.I., Thompson A.J., Kingsley D.P., MacManus D.G., Kendall B.E., Rudge P., McDonald W.I., Miller D.H. The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain. 1998;121:495–503. doi: 10.1093/brain/121.3.495.
    1. Tintore M., Rovira A., Rio J., Nos C., Grive E., Tellez N., Pelayo R., Comabella M., Sastre-Garriga J., Montalban X. Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology. 2006;67:968–972. doi: 10.1212/.
    1. Giorgio A., Battaglini M., Rocca M.A., de Leucio A., Absinta M., van Schijndel R., Rovira A., Tintoré M., Chard D., Ciccarelli O., et al. Location of brain lesions predicts conversion of clinically isolated syndromes to multiple sclerosis. Neurology. 2013;80:234–241. doi: 10.1212/WNL.0b013e31827debeb.
    1. Fisniku L.K., Brex P.A., Altmann D.R., Miszkiel K.A., Benton C.E., Lanyon R., Thompson A.J., Miller D.H. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131:808–817. doi: 10.1093/brain/awm329.
    1. Frohman E.M., Frohman T.C., Zee D.S., McColl R., Galetta S. The neuro-ophthalmology of multiple sclerosis. Lancet. Neurol. 2005;4:111–121. doi: 10.1016/S1474-4422(05)00992-0.
    1. Optic Neuritis Study Group Multiple sclerosis risk after optic neuritis: Final optic neuritis treatment trial follow-up. Arch. Neurol. 2008;65:727–732.

Source: PubMed

3
Abonner