Effect of acute and chronic GVHD on relapse and survival after reduced-intensity conditioning allogeneic transplantation for myeloma

O Ringdén, S Shrestha, G T da Silva, M-J Zhang, A Dispenzieri, M Remberger, R Kamble, C O Freytes, R P Gale, J Gibson, V Gupta, L Holmberg, H Lazarus, P McCarthy, K Meehan, H Schouten, G A Milone, S Lonial, P N Hari, O Ringdén, S Shrestha, G T da Silva, M-J Zhang, A Dispenzieri, M Remberger, R Kamble, C O Freytes, R P Gale, J Gibson, V Gupta, L Holmberg, H Lazarus, P McCarthy, K Meehan, H Schouten, G A Milone, S Lonial, P N Hari

Abstract

We evaluated the effect of acute and chronic GVHD on relapse and survival after allogeneic hematopoietic SCT (HSCT) for multiple myeloma using non-myeloablative conditioning (NMA) and reduced-intensity conditioning (RIC). The outcomes of 177 HLA-identical sibling HSCT recipients between 1997 and 2005, following NMA (n=98) or RIC (n=79) were analyzed. In 105 patients, autografting was followed by planned NMA/RIC allogeneic transplantation. The impact of GVHD was assessed as a time-dependent covariate using Cox models. The incidence of acute GVHD (aGVHD; grades I-IV) was 42% (95% confidence interval (CI), 35-49%) and of chronic GVHD (cGVHD) at 5 years was 59% (95% CI, 49-69%), with 70% developing extensive cGVHD. In multivariate analysis, aGVHD (≥ grade I) was associated with an increased risk of TRM (relative risk (RR)=2.42, P=0.016), whereas limited cGVHD significantly decreased the risk of myeloma relapse (RR=0.35, P=0.035) and was associated with superior EFS (RR=0.40, P=0.027). aGVHD had a detrimental effect on survival, especially in those receiving autologous followed by allogeneic HSCT (RR=3.52, P=0.001). The reduction in relapse risk associated with cGVHD is consistent with a beneficial graft-vs-myeloma effect, but this did not translate into a survival advantage.

Figures

Figure 1
Figure 1
Figure. 1a. Acute GVHD and transplant-related mortality (TRM) in patients with (grades I–IV) and without any acute GVHD by day 100 (Landmark analysis) Figure. 1b. Chronic GVHD and transplant-related mortality (TRM) in patients with and without chronic GVHD within one year (Landmark analysis)
Figure 1
Figure 1
Figure. 1a. Acute GVHD and transplant-related mortality (TRM) in patients with (grades I–IV) and without any acute GVHD by day 100 (Landmark analysis) Figure. 1b. Chronic GVHD and transplant-related mortality (TRM) in patients with and without chronic GVHD within one year (Landmark analysis)
Figure 2
Figure 2
Relapse in patients with and without chronic GVHD within one year (Landmark analysis)
Figure 3
Figure 3
Event-free survival (EFS) in patients with and without chronic GVHD within one year (Landmark analysis)

References

    1. Aschan J, Lonnqvist B, Ringden O, Kumlien G, Gahrton G. Graft-versus-myeloma effect. Lancet. 1996;348(9023):346.
    1. Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I, et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol. 2000;18(16):3031–7.
    1. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood. 1996;87(3):1196–8.
    1. Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ. Graft-versus-myeloma effect in two cases. Lancet. 1996;347(9004):800–1.
    1. Le Blanc R, Montminy-Metivier S, Belanger R, Busque L, Fish D, Roy DC, et al. Allogeneic transplantation for multiple myeloma: further evidence for a GVHD-associated graft-versus-myeloma effect. Bone Marrow Transplant. 2001;28(9):841–8.
    1. Bruno B, Rotta M, Patriarca F, Mattei D, Allione B, Carnevale-Schianca F, et al. Nonmyeloablative allografting for newly diagnosed multiple myeloma: the experience of the Gruppo Italiano Trapianti di Midollo. Blood. 2009;113(14):3375–82.
    1. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol. 2006;24 (6):929–36.
    1. Bjorkstrand BB, Ljungman P, Svensson H, Hermans J, Alegre A, Apperley J, et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma: a retrospective case-matched study from the European Group for Blood and Marrow Transplantation. Blood. 1996;88(12):4711–8.
    1. Facon T, Mary JY, Hulin C, Benboubker L, Attal M, Pegourie B, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet. 2007;370(9594):1209–18.
    1. Gahrton G, Svensson H, Cavo M, Apperly J, Bacigalupo A, Bjorkstrand B, et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br J Haematol. 2001;113(1):209–16.
    1. Maloney DG, Molina AJ, Sahebi F, Stockerl-Goldstein KE, Sandmaier BM, Bensinger W, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood. 2003;102(9):3447–54.
    1. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.
    1. Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.
    1. Rosinol L, Perez-Simon JA, Sureda A, de la Rubia J, de Arriba F, Lahuerta JJ, et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood. 2008;112(9):3591–3.
    1. Krishnan A, Pasquini M, Ewell M, Stadtmauer EA, Edwin PAI, Antin JH, et al. Tandem Autologous Hematopoietic Stem Cell Transplants (AuHCT) with or without Maintenance Therapy (auto-auto) Versus Single AuHCT Followed by HLA Matched Sibling Non- Myeloablative Allogeneic HCT (auto-allo) for Patients with Standard Risk (SR) Multiple Myeloma (MM): Results From the Blood and Marrow Transplant Clinical Trials Network (BMT CTN) 0102 Trial. ASH Annual Meeting Abstracts. 2010;116:41.
    1. Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S, et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood. 2005;105(11):4532–9.
    1. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.
    1. Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol. 1998;102(5):1115–23.
    1. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18(4):295–304.
    1. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980;69(2):204–17.
    1. Crawley C, Iacobelli S, Bjorkstrand B, Apperley JF, Niederwieser D, Gahrton G. Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning. Blood. 2007;109(8):3588–94.
    1. Rotta M, Storer BE, Sahebi F, Shizuru JA, Bruno B, Lange T, et al. Long-term outcome of patients with multiple myeloma after autologous hematopoietic cell transplantation and nonmyeloablative allografting. Blood. 2009;113(14):3383–91.
    1. Ringden O, Hermans J, Labopin M, Apperley J, Gorin NC, Gratwohl A. The highest leukaemia-free survival after allogeneic bone marrow transplantation is seen in patients with grade I acute graft-versus-host disease. Acute and Chronic Leukaemia Working Parties of the European Group for Blood and Marrow Transplantation (EBMT) Leuk Lymphoma. 1996;24(1–2):71–9.
    1. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.
    1. Ringden O, Labopin M, Gluckman E, Reiffers J, Vernant JP, Jouet JP, et al. Graft-versus-leukemia effect in allogeneic marrow transplant recipients with acute leukemia is maintained using cyclosporin A combined with methotrexate as prophylaxis. Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 1996;18(5):921–9.
    1. Sullivan KM, Weiden PL, Storb R, Witherspoon RP, Fefer A, Fisher L, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood. 1989;73(6):1720–8.
    1. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304(25):1529–33.
    1. Carlens S, Aschan J, Remberger M, Dilber M, Ringden O. Low-dose cyclosporine of short duration increases the risk of mild and moderate GVHD and reduces the risk of relapse in HLA-identical sibling marrow transplant recipients with leukaemia. Bone Marrow Transplant. 1999;24(6):629–35.

Source: PubMed

3
Abonner