LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase

Sergey Filippov, Stephen L Pinkosky, Roger S Newton, Sergey Filippov, Stephen L Pinkosky, Roger S Newton

Abstract

Purpose of review: To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol (LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated protein kinase.

Recent findings: ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies, ETC-1002 dosed once daily for 2-12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight. Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no serious adverse effects.

Summary: Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.

Figures

Box 1
Box 1
no caption available
FIGURE 1
FIGURE 1
ETC-1002 Mechanism of Action. ETC-1002 is an ACL inhibitor/AMPK activator that beneficially modulates lipid, lipoprotein, and carbohydrate metabolism, and inflammation. ETC-1002 reduces LDL-C via inhibition of ACL, an enzyme that is upstream of HMG-CoA reductase in the cholesterol synthesis pathway. Activation of AMPK by ETC-1002 is complementary to ACL inhibition, and mediates beneficial effects on other cardiometabolic risk markers.

References

    1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 2013; 127:e6–e245
    1. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 2011; 123:933–944
    1. Lewis SJ. Lipid-lowering therapy: who can benefit? Vasc Health Risk Manag 2011; 7:525–534
    1. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013; 40:195–211
    1. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 2013; 368:2004–2013
    2. This review summarizes current understanding of the mechanisms underlying transition from stable ischemic heart disease or asymptomatic atherosclerosis to acute coronary syndromes.

    1. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013; 38:1092–1104
    1. Cohen JD, Brinton EA, Ito MK, Jacobson TA. Understanding Statin Use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J Clin Lipidol 2012; 6:208–215
    1. Maningat P, Breslow JL. Needed: pragmatic clinical trials for statin-intolerant patients. N Engl J Med 2011; 365:2250–2251
    1. Brown MT, Bussell JK. Medication adherence: WHO cares? Mayo Clin Proc 2011; 86:304–314
    1. FDA Expands Advice on Statin Risks. ; 2014
    1. Filippov S, Pinkosky SL, Lister RJ, et al. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J Lipid Res 2013; 54:2095–2108
    1. Pinkosky SL, Filippov S, Srivastava AR, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002-a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013; 54:134–151
    1. Ballantyne CM, Davidson MH, Macdougall DE, et al. Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia: results of a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. J Am Coll Cardiol 2013; 62:1154–1162
    1. Gutierrez MJ, Rosenberg NL, Macdougall DE, et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2014; 34:676–683
    1. Norata GD, Ballantyne CM, Catapano AL. New therapeutic principles in dyslipidaemia: focus on LDL and Lp(a) lowering drugs. Eur Heart J 2013; 34:1783–1789
    1. Kane JP. New horizons in lipid management. J Am Coll Cardiol 2013; 62:1163–1164
    1. Elshourbagy NA, Near JC, Kmetz PJ, et al. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem 1990; 265:1430–1435
    1. Pearce NJ, Yates JW, Berkhout TA, et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem J 1998; 334 (Pt 1):113–119
    1. Chu KY, Lin Y, Hendel A, et al. ATP-citrate lyase reduction mediates palmitate-induced apoptosis in pancreatic beta cells. J Biol Chem 2010; 285:32606–32615
    1. Gribble AD, Ife RJ, Shaw A, et al. ATP-citrate lyase as a target for hypolipidemic intervention. 2. Synthesis and evaluation of (3R,5S)-omega-substituted-3-carboxy-3, 5-dihydroxyalkanoic acids and their gamma-lactone prodrugs as inhibitors of the enzyme in vitro and in vivo. J Med Chem 1998; 41:3582–3595
    1. Kanao T, Fukui T, Atomi H, Imanaka T. Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase. Eur J Biochem 2002; 269:3409–3416
    1. Lim K, Ryu S, Suh H, et al. (-)-Hydroxycitrate ingestion and endurance exercise performance. J Nutr Sci Vitaminol (Tokyo) 2005; 51:1–7
    1. Melnick JZ, Srere PA, Elshourbagy NA, et al. Adenosine triphosphate citrate lyase mediates hypocitraturia in rats. J Clin Invest 1996; 98:2381–2387
    1. Kim KS, Kang JG, Moon YA, et al. Regulation of ATP-citrate lyase gene transcription. Yonsei Med J 1996; 37:214–224
    1. Park SW, Kim KS, Whang SK, et al. Induction of hepatic ATP-citrate lyase by insulin in diabetic rat – effects of insulin on the contents of enzyme and its mRNA in cytosol, and the transcriptional activity in nuclei. Yonsei Med J 1994; 35:25–33
    1. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350:1495–1504
    1. Fonarow GC, Watson KE. Effective strategies for long-term statin use. Am J Cardiol 2003; 92:27i–34i
    1. Kastelein JJ. The future of lipid-lowering therapy: the big picture. Neth J Med 2003; 61:35–39
    1. Kovanen PT, Bilheimer DW, Goldstein JL, et al. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci U S A 1981; 78:1194–1198
    1. Berkhout TA, Havekes LM, Pearce NJ, Groot PH. The effect of (−)-hydroxycitrate on the activity of the low-density-lipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2. Biochem J 1990; 272:181–186
    1. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009; 89:1025–1078
    1. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8:774–785
    1. Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase – the fat controller of the energy railroad. Can J Physiol Pharmacol 2006; 84:655–665
    1. Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 1973; 248:378–380
    1. Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 2008; 28:253–272
    1. Beg ZH, Stonik JA, Brewer HB., Jr Modulation of the enzymic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase by multiple kinase systems involving reversible phosphorylation: a review. Metabolism 1987; 36:900–917
    1. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005; 1:361–370
    1. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413:131–138
    1. Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423:550–555
    1. Leclerc I, Lenzner C, Gourdon L, et al. Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes 2001; 50:1515–1521
    1. Hong YH, Varanasi US, Yang W, Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 2003; 278:27495–27501
    1. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307:384–387
    1. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013; 493:346–355
    2. A comprehensive review of the current literature on mechanisms of metabolic changes in immune cells and a role of AMPK in regulation of immune response.

    1. Liu TF, Brown CM, El Gazzar M, et al. Fueling the flame: bioenergy couples metabolism and inflammation. J Leukoc Biol 2012; 92:499–507
    1. Blagih J, Krawczyk CM, Jones RG. LKB1 and AMPK: central regulators of lymphocyte metabolism and function. Immunol Rev 2012; 249:59–71
    1. Fullerton MD, Steinberg GR, Schertzer JD. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol 2012; 366:224–234
    2. This review highlights recent evidence linking AMPK function to metabolic diseases including insulin resistance and atherosclerosis.

    1. Mounier R, Theret M, Arnold L, et al. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 2013; 18:251–264
    1. Galic S, Fullerton MD, Schertzer JD, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 2011; 121:4903–4915
    1. Carroll KC, Viollet B, Suttles J. AMPKalpha1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J Leukoc Biol 2013; 94:1113–1121
    1. Kauppinen A, Suuronen T, Ojala J, et al. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25:1939–1948
    1. Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 2011; 89:667–676
    1. Cramer CT, Goetz B, Hopson KL, et al. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. J Lipid Res 2004; 45:1289–1301

Source: PubMed

3
Abonner