Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial

Josephine Ho, Raylene A Reimer, Manpreet Doulla, Carol Huang, Josephine Ho, Raylene A Reimer, Manpreet Doulla, Carol Huang

Abstract

Background: The gut microbiome is increasingly recognized as a contributor to disease states. Patients with type 1 diabetes (DM1) have distinct gut microbiota in comparison to non-diabetic individuals, and it has been linked to changes in intestinal permeability, inflammation and insulin resistance. Prebiotics are non-digestible carbohydrates that alter gut microbiota and could potentially improve glycemic control in children with DM1. This pilot study aims to determine the feasibility of a 12-week dietary intervention with prebiotics in children with DM1.

Methods/design: This pilot study is a single-centre, randomized, double-blind, placebo-controlled trial in children aged 8 to 17 years with DM1 for at least one year. Participants will be randomized to receive either placebo (maltodextrin 3.3 g orally/day) or prebiotics (oligofructose-enriched inulin 8 g orally/day; Synergy1, Beneo, Mannheim, Germany). Measures to be assessed at baseline, 3 months and 6 months include: anthropometric measures, insulin doses/regimens, frequency of diabetic ketoacidosis, frequency of severe hypoglycemia, average number of episodes of hypoglycemia per week, serum C-peptide, HbA1c, serum inflammatory markers (IL-6, IFN-gamma, TNF-alpha, and IL-10), GLP-1 and GLP-2, intestinal permeability using urine assessment after ingestion of lactulose, mannitol and 3-O-methylglucose, and stool sample collection for gut microbiota profiling.

Discussion: This is a novel pilot study designed to test feasibility for a fully powered study. We hypothesize that consumption of prebiotics will alter gut microbiota and intestinal permeability, leading to improved glycemic control. Prebiotics are a potentially novel, inexpensive, low-risk treatment addition for DM1 that may improve glycemic control by changes in gut microbiota, gut permeability and inflammation.

Trial registration: ClinicalTrials.gov: NCT02442544 . Registered on 10 March 2015.

Keywords: Child; Gut microbiota; Intestinal permeability; Prebiotics; Type 1 diabetes.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram

References

    1. Vaarala O. Gut microbiota and type 1 diabetes. Rev Diabet Stud. 2012;9(4):251–9. doi: 10.1900/RDS.2012.9.251.
    1. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455(7216):1109–13. doi: 10.1038/nature07336.
    1. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013;62(4):1238–44. doi: 10.2337/db12-0526.
    1. de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569–77. doi: 10.1007/s00125-014-3274-0.
    1. Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;4:3814. doi: 10.1038/srep03814.
    1. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46. doi: 10.1186/1741-7015-11-46.
    1. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Teachnol Bull Funct Foods. 2010;7(1):1–19. doi: 10.1616/1476-2137.15880.
    1. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62(8):1112–21. doi: 10.1136/gutjnl-2012-303304.
    1. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(7):1147–61. doi: 10.1017/S0007114513003607.
    1. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117–23. doi: 10.3109/09637486.2013.836738.
    1. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl 2):S1–63. doi: 10.1017/S0007114510003363.
    1. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr. 2007;137(11 Suppl):2547S–51.
    1. Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes. 2014;5(1):3–17. doi: 10.3920/BM2012.0065.
    1. Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA. Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring) 2014;22(3):763–71. doi: 10.1002/oby.20632.
    1. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article: bifidobacteria as probiotic agents — physiological effects and clinical benefits. Aliment Pharmacol Ther. 2005;22(6):495–512. doi: 10.1111/j.1365-2036.2005.02615.x.
    1. de Kort S, Keszthelyi D, Masclee AA. Leaky gut and diabetes mellitus: what is the link? Obes Rev. 2011;12(6):449–58. doi: 10.1111/j.1467-789X.2010.00845.x.
    1. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. doi: 10.2337/db06-1491.
    1. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103. doi: 10.1136/gut.2008.165886.
    1. Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci. 2011;1243:103–18. doi: 10.1111/j.1749-6632.2011.06340.x.
    1. Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr. 2012;107(4):601–13. doi: 10.1017/S0007114511003163.
    1. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–83. doi: 10.1007/s00125-007-0791-0.
    1. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61(4):543–53. doi: 10.1136/gutjnl-2011-301012.
    1. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86. doi: 10.2337/db11-0227.
    1. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809–15. doi: 10.2337/dc10-2197.
    1. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89(6):1751–9. doi: 10.3945/ajcn.2009.27465.
    1. Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Physiol. 1999;276(4 Pt 1):G951–7.
    1. Sigalet DL, Martin GR, Meddings JB. 3-0 methylglucose uptake as a marker of nutrient absorption and bowel length in pediatric patients. JPEN J Parenter Enteral Nutr. 2004;28(3):158–62. doi: 10.1177/0148607104028003158.
    1. Bomhof MR, Paul HA, Geuking MB, Eller LK, Reimer RA. Improvement in adiposity with oligofructose is modified by antibiotics in obese rats. FASEB J. 2016. [Epub ahead of print]. doi:10.1096/fj.201600151R.
    1. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30(5):614–20. doi: 10.1093/bioinformatics/btt593.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461.

Source: PubMed

3
Abonner