Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study

Van T Pham, Sophie Fehlbaum, Nicole Seifert, Nathalie Richard, Maaike J Bruins, Wilbert Sybesma, Ateequr Rehman, Robert E Steinert, Van T Pham, Sophie Fehlbaum, Nicole Seifert, Nathalie Richard, Maaike J Bruins, Wilbert Sybesma, Ateequr Rehman, Robert E Steinert

Abstract

An increasing body of evidence has shown that gut microbiota imbalances are linked to diseases. Currently, the possibility of regulating gut microbiota to reverse these perturbations by developing novel therapeutic and preventive strategies is being extensively investigated. The modulatory effect of vitamins on the gut microbiome and related host health benefits remain largely unclear. We investigated the effects of colon-delivered vitamins A, B2, C, D, and E on the gut microbiota using a human clinical study and batch fermentation experiments, in combination with cell models for the assessment of barrier and immune functions. Vitamins C, B2, and D may modulate the human gut microbiome in terms of metabolic activity and bacterial composition. The most distinct effect was that of vitamin C, which significantly increased microbial alpha diversity and fecal short-chain fatty acids compared to the placebo. The remaining vitamins tested showed similar effects on microbial diversity, composition, and/or metabolic activity in vitro, but in varying degrees. Here, we showed that vitamins may modulate the human gut microbiome. Follow-up studies investigating targeted delivery of vitamins to the colon may help clarify the clinical significance of this novel concept for treating and preventing dysbiotic microbiota-related human diseases. Trial registration: ClinicalTrials.gov, NCT03668964. Registered 13 September 2018 - Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT03668964.

Keywords: Vitamins; dysbiosis; gut microbiome; targeted delivery.

Figures

Figure 1.
Figure 1.
Alpha diversity of gut microbiota before and after colon-delivered vitamin intervention.Diversity indices, including evenness (a), Shannon’s index (b), observed number of species (c) and Simpson’s index (d) were compared before and after colon-delivered vitamin intervention, using a paired Wilcoxon test. Absolute changes between the intervention group and the placebo were compared using a Wilcoxon test. Values are shown as median and interquartile range. NS, not significant, p > .05
Figure 1.
Figure 1.
Alpha diversity of gut microbiota before and after colon-delivered vitamin intervention.Diversity indices, including evenness (a), Shannon’s index (b), observed number of species (c) and Simpson’s index (d) were compared before and after colon-delivered vitamin intervention, using a paired Wilcoxon test. Absolute changes between the intervention group and the placebo were compared using a Wilcoxon test. Values are shown as median and interquartile range. NS, not significant, p > .05
Figure 2.
Figure 2.
Effect of vitamin treatments on microbial composition in humans and in vitro. Values are shown as absolute difference in relative abundance at the phylum (p), family (f), genus (g), and species (s) level versus placebo (for human study), or versus the control (for in vitro study), using different bubble size. Direction of change is depicted by color. Significant differences are marked as bold
Figure 2.
Figure 2.
Effect of vitamin treatments on microbial composition in humans and in vitro. Values are shown as absolute difference in relative abundance at the phylum (p), family (f), genus (g), and species (s) level versus placebo (for human study), or versus the control (for in vitro study), using different bubble size. Direction of change is depicted by color. Significant differences are marked as bold
Figure 3.
Figure 3.
Short-chain fatty acid concentrations before and after colon-delivered vitamin intervention. Concentrations (mM) of acetate (a), propionate (b), butyrate (c) and total SCFA (d) before and after colon-delivered vitamin intervention were compared using the paired t-test when parametric assumptions were met, or a paired Wilcoxon test when parametric assumptions were not met. Absolute changes between the intervention group and the placebo were compared using the t-test when parametric assumption was met, or a Wilcoxon test when parametric assumptions were not met. Values are shown as mean ± SEM. NS, p > .05
Figure 3.
Figure 3.
Short-chain fatty acid concentrations before and after colon-delivered vitamin intervention. Concentrations (mM) of acetate (a), propionate (b), butyrate (c) and total SCFA (d) before and after colon-delivered vitamin intervention were compared using the paired t-test when parametric assumptions were met, or a paired Wilcoxon test when parametric assumptions were not met. Absolute changes between the intervention group and the placebo were compared using the t-test when parametric assumption was met, or a Wilcoxon test when parametric assumptions were not met. Values are shown as mean ± SEM. NS, p > .05
Figure 4.
Figure 4.
Vitamin treatments induced changes in the composition of the gut microbiome invitro. (a) Non-metric multidimensional scaling (nMDS) analysis of microbiome profiles generated via fermentation supernatant samples. An additional sample was taken from vitamin B2 0.2x fermentation vessel at baseline to assess the consistency of microbiome profiling procedure. (b) The number of species in fermentation supernatant samplesEach vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2) .
Figure 4.
Figure 4.
Vitamin treatments induced changes in the composition of the gut microbiome invitro. (a) Non-metric multidimensional scaling (nMDS) analysis of microbiome profiles generated via fermentation supernatant samples. An additional sample was taken from vitamin B2 0.2x fermentation vessel at baseline to assess the consistency of microbiome profiling procedure. (b) The number of species in fermentation supernatant samplesEach vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2) .
Figure 5.
Figure 5.
Vitamin treatments induced changes in the metabolic activity of the gut microbiome invitro. SCFA production after 48 h fermentation upon/after addition of vitamins. Data are expressed as mM. Each vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2) .
Figure 5.
Figure 5.
Vitamin treatments induced changes in the metabolic activity of the gut microbiome invitro. SCFA production after 48 h fermentation upon/after addition of vitamins. Data are expressed as mM. Each vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2) .
Figure 6.
Figure 6.
Vitamin treatments improved immune function and barrier integrity in vitro. (a) Effect of vitamin E on IL-8-CXCL8 production by HT29 cells. Data are expressed as pg/mL. (b-c) Effects of vitamins C and E on gut barrier integrity using a cellular intestinal model. Data are expressed as the ratio between TEER at the end of the incubation period and initial TEER. TEER ratios and IL-8-CXCL8 concentrations of samples taken before and after fermentation were compared using unpaired t-tests and unpaired Wilcoxon tests. Absolute changes between vitamin treatment groups and the control (between reactors) were compared using a linear model. Values are shown as median and interquartile range. # = p < .05; before fermentation group; * = p < .05; control. Each vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2)
Figure 6.
Figure 6.
Vitamin treatments improved immune function and barrier integrity in vitro. (a) Effect of vitamin E on IL-8-CXCL8 production by HT29 cells. Data are expressed as pg/mL. (b-c) Effects of vitamins C and E on gut barrier integrity using a cellular intestinal model. Data are expressed as the ratio between TEER at the end of the incubation period and initial TEER. TEER ratios and IL-8-CXCL8 concentrations of samples taken before and after fermentation were compared using unpaired t-tests and unpaired Wilcoxon tests. Absolute changes between vitamin treatment groups and the control (between reactors) were compared using a linear model. Values are shown as median and interquartile range. # = p < .05; before fermentation group; * = p < .05; control. Each vitamin was tested at 3 doses (0.2x, 1x, and 5x) (Table S2)

References

    1. Kho ZY, Lal SK.. 2018. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol. 9:1835. doi:10.3389/fmicb.2018.01835.
    1. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 125(6):1401–20. doi:10.1093/jn/125.6.1401.
    1. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 14(8):491–502. doi:10.1038/nrgastro.2017.75.
    1. Steinert RE, Sadaghian Sadabad M, Harmsen HJM, Weber P. 2016. The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate? Eur J Clin Nutr. 70(12):1461. doi:10.1038/ejcn.2016.141.
    1. von Martels JZH, Bourgonje AR, Klaassen MAY, Alkhalifah HAA, Sadaghian Sadabad M, Vich Vila A, Gacesa R, Gabriëls RY, Steinert RE, Jansen BH, et al. Riboflavin supplementation in patients with Crohn’s disease (RISE-UP study). J Crohns Colitis. 2019;14(5):595–607. doi:10.1093/ecco-jcc/jjz208.
    1. Fangmann D, Theismann E-M, Türk K, Schulte DM, Relling I, Hartmann K, Keppler JK, Knipp J-R, Rehman A, Heinsen F-A, et al. 2018. Targeted microbiome intervention by microencapsulated delayed-release niacin beneficially affects insulin sensitivity in humans. Diabetes Care. 41(3):398–405. doi:10.2337/dc17-1967.
    1. Cole ET, Scott RA, Connor AL, Wilding IR, Petereit HU, Schminke C, Beckert T, Cadé D. 2002. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int J Pharm. 231(1):83–95. doi:10.1016/S0378-5173(01)00871-7.
    1. Basu TK, Donaldson D. 2003. Intestinal absorption in health and disease: micronutrients. Best Pract Res Clin Gastroenterol. 17(6):957–979. doi:10.1016/S1521-6918(03)00084-2.
    1. Reboul E. 2013. Absorption of vitamin A and Carotenoids by the enterocyte: focus on transport proteins. Nutrients. 5(9):3563–3581. doi:10.3390/nu5093563.
    1. Gropper S, Smith J, Groff JL. 2004. Advanced nutrition and human metabolism. Cengage Learning.
    1. Graf E. 1980. Vitamin E: a comprehensive treatise (basic and clinical nutrition, volume 1). Machlin LJ, Dekker M. New York
    1. Tang M, Frank DN, Sherlock L, Ir D, Robertson CE, Krebs NF. 2016. Effect of vitamin E with therapeutic iron supplementation on iron repletion and gut microbiome in U.S. iron deficient infants and toddlers: a randomized control trial. J Pediatr Gastroenterol Nutr. 63(3):379–385. doi:10.1097/MPG.0000000000001154.
    1. APJ DV, Oterdoom LH, Gans ROB, Bakker SJL. 2006. Supplementation with anti-oxidants vitamin C and E decreases cyclosporine A trough-levels in renal transplant recipients. Nephrol Dial Transplant. 21(1):231–232. doi:10.1093/ndt/gfi112.
    1. Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, Venkatesan A, Fraser CM, Mowry EM. 2015. Gut microbiota in MS: possible influence of immunomodulators. J Investig Med. 63(5):729–734. doi:10.1097/JIM.0000000000000192.
    1. Lakoff A, Fazili Z, Aufreiter S, Pfeiffer CM, Connolly B, Gregory JF, Pencharz PB, O’Connor DL. 2014. Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. Am J Clin Nutr. 100(5):1278–1286. doi:10.3945/ajcn.114.091785.
    1. Overview on Tolerable Upper Intake Levels as derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) . 2018. Available from:
    1. McCormack UM, Curião T, Wilkinson T, Metzler-Zebeli BU, Reyer H, Ryan T, Calderon-Diaz JA, Crispie F, Cotter PD, Creevey CJ, et al. Fecal microbiota transplantation in gestating sows and neonatal offspring alters lifetime intestinal microbiota and growth in offspring. mSystems. 2018;3(3):e00134-17. doi:10.1128/mSystems.00134-17
    1. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 9(8):811–814. doi:10.1038/nmeth.2066.
    1. Silva GGZ, Green KT, Dutilh BE, Edwards RA. 2016. SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics. 32(3):354–361. doi:10.1093/bioinformatics/btv584.
    1. Zhao G, Nyman M, Jönsson JA. 2006. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr. 20(8):674–682. doi:10.1002/bmc.580.
    1. Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier J-C, Dione N, Brah S, Hugon P, Lombard V, Armougom F, et al. 2016. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep. 6(1):26051. doi:10.1038/srep26051.
    1. Ware JE, Sherbourne CD. 1992. The MOS 36-item short-form health survey (SF-36). Med Care. 30(6):473–483. doi:10.1097/00005650-199206000-00002.
    1. Svedlund J, Sjödin I, Dotevall G. 1988. GSRS–a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci. 33(2):129–134. doi:10.1007/BF01535722.
    1. De Weirdt R, Possemiers S, Vermeulen G, Moerdijk-Poortvliet TCW, Boschker HTS, Verstraete W. 2010. Van de Wiele T. human faecal microbiota display variable patterns of glycerol metabolism. FEMS Microbiol Ecol. 74(3):601–611. doi:10.1111/j.1574-6941.2010.00974.x.
    1. Pham VT, Seifert N, Richard N, Raederstorff D, Steinert RE, Prudence K, Mohajeri MH. 2018. The effects of fermentation products of prebiotic fibres on gut barrier and immune functions in vitro. PeerJ. 6:e5288. doi:10.7717/peerj.5288.
    1. R: a language and environment for statistical computing . 2015. Available from:
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen -Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science. 334(6052):105–108. doi:10.1126/science.1208344.
    1. Lv Z, Wang Y, Yang T, Zhan X, Li Z, Hu H, Li T, Chen J. 2016. Vitamin A deficiency impacts the structural segregation of gut microbiota in children with persistent diarrhea. J Clin Biochem Nutr. 59(2):113–121. doi:10.3164/jcbn.15-148.
    1. Mandal S, Godfrey KM, McDonald D, Treuren WV, Bjørnholt JV, Midtvedt T, Moen B, Rudi K, Knight R, Brantsæter AL, et al. 2016. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome. 4(1):55. doi:10.1186/s40168-016-0200-3.
    1. Li L, Krause L, Somerset S. 2017. Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clinical Nutrition. 36(4):1097–1104. doi:10.1016/j.clnu.2016.06.029.
    1. Liu H, Zhang H, Wang X, Yu X, Hu C, Zhang X. 2018. The family coriobacteriaceae is a potential contributor to the beneficial effects of Roux-en-Y gastric bypass on type 2 diabetes. Surgery for Obesity and Related Diseases. 14(5):584–593. doi:10.1016/j.soard.2018.01.012.
    1. Lahti L, Salonen A, Kekkonen RA, Salojärvi J, Jalanka-Tuovinen J, Palva A, Orešič M, de Vos WM. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. Peer J. 2013;1:e32. doi: 10.7717/peerj.32
    1. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen J-P, et al. 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 62(8):1112–1121. doi:10.1136/gutjnl-2012-303304.
    1. Moore WE, Moore LH. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 61(9):3202–3207. doi:10.1128/AEM.61.9.3202-3207.1995.
    1. Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A. 2007. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 133(1):24–33. doi:10.1053/j.gastro.2007.04.005.
    1. Rajilić-Stojanović M, de Vos WM. 2014. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 38(5):996–1047. doi:10.1111/1574-6976.12075.
    1. Qin P, Zou Y, Dai Y, Luo G, Zhang X, Xiao L. Characterization a novel butyric acid-producing bacterium collinsella aerofaciens subsp. Shenzhenensis Subsp Nov Microorganisms. 2019;7(3):78. doi:10.3390/microorganisms7030078
    1. Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev. 67(3):429–453. doi:10.1128/MMBR.67.3.429-453.2003.
    1. Duncan SH, Louis P, Thomson JM, Flint HJ. 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 11(8):2112–2122. doi:10.1111/j.1462-2920.2009.01931.x.
    1. Million M, Armstrong N, Khelaifia S, Guilhot E, Richez M, Lagier J-C, Dubourg G, Chabriere E, Raoult D. 2020. The antioxidants glutathione, ascorbic acid and uric acid maintain butyrate production by human gut clostridia in the presence of oxygen in vitro. Sci Rep. 10:7705.
    1. Million M, Raoult D. 2018. Linking gut redox to human microbiome. Human Microbiome Journal. 10:27–32. doi:10.1016/j.humic.2018.07.002.
    1. Xu J, Xu C, Chen X, Cai X, Yang S, Sheng Y, Wang T. 2014. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 30(5):584–589. doi:10.1016/j.nut.2013.10.018.
    1. Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, Peterson DA, Osterman AL, Peterson SN. B-vitamin sharing promotes stability of gut microbial communities. Front Microbiol. 2019;10:1485. doi:10.3389/fmicb.2019.01485
    1. Magnúsdóttir S, Ravcheev D, de Crécy-lagard V, Thiele I. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. doi:10.3389/fgene.2015.00148.
    1. Soto-Martin EC, Warnke I, Farquharson FM, Christodoulou M, Horgan G, Derrien M, Faurie J-M, Flint HJ, Duncan SH, Louis P. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio. 2020;11(4). doi:10.1128/mBio.00886-20
    1. Das P, Babaei P, Nielsen J. 2019. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics. 20(1):208. doi:10.1186/s12864-019-5591-7.
    1. Klaassen MAY, Imhann F, Collij V, Fu J, Wijmenga C, Zhernakova A, Dijkstra G, Festen EAM, Gacesa R, Vich Vila A, et al. 2019. Anti-inflammatory gut microbial pathways are decreased during crohn’s disease exacerbations. J Crohns Colitis. 13(11):1439–1449. doi:10.1093/ecco-jcc/jjz077.
    1. Gehrig JL, Venkatesh S, Chang H-W, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S, Cowardin CA, Meier MF, et al. 2019. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 365(6449):eaau4732. doi:10.1126/science.aau4732.
    1. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, Newburg DS, Ward DV, Schibler KR. 2014. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 165(1):23–29. doi:10.1016/j.jpeds.2014.01.010.
    1. Murphy EA, Velazquez KT, Herbert KM. 2015. Influence of high-fat-diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 18(5):515–520. doi:10.1097/MCO.0000000000000209.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. 2009. A core gut microbiome in obese and lean twins. Nature. 457(7228):480–484. doi:10.1038/nature07540.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464(7285):59–65. doi:10.1038/nature08821.
    1. Khan MT, Duncan SH, Stams AJM, van Dijl JM, Flint HJ, Harmsen HJM. 2012. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases. Isme J. 6(8):1578–1585. doi:10.1038/ismej.2012.5.
    1. Khan MT, Browne WR, van Dijl JM, Harmsen HJM. 2012. How can faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? Antioxid Redox Signal. 17(10):1433–1440. doi:10.1089/ars.2012.4701.
    1. Khan MT, van Dijl JM, Harmsen HJM. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium faecalibacterium prausnitzii alive at ambient air. PLoS One. 2014;9(5):e96097.
    1. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. 2013. Commensal clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5(1):23. doi:10.1186/1757-4749-5-23.
    1. Louis S, Tappu R-M, Damms-Machado A, Huson DH, Bischoff SC. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One. 2016;11(2):e0149564.
    1. Bashir M, Prietl B, Tauschmann M, Mautner SI, Kump PK, Treiber G, Wurm P, Gorkiewicz G, Högenauer C, Pieber TR. 2016. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. Eur J Nutr. 55(4):1479–1489. doi:10.1007/s00394-015-0966-2.
    1. Engels C, Ruscheweyh H-J, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:713. doi:10.3389/fmicb.2016.00713.
    1. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, et al. 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology. 4(4):623–632. doi:10.1038/s41564-018-0337-x.
    1. Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Vitamin YY. E (α-tocopherol) consumption influences gut microbiota composition. Int J Food Sci Nutr. 2020;71(2):221–225. doi:10.1080/09637486.2019.1639637.
    1. Chatterjee I, Lu R, Zhang Y, Zhang J, Dai Y, Xia Y, Sun J. 2020. Vitamin D receptor promotes healthy microbial metabolites and microbiome. Sci Rep. 10(1):7340. doi:10.1038/s41598-020-64226-7.
    1. Nur Azlina MF, Kamisah Y, Chua KH, Ibrahim IAA, Qodriyah HMS.. 2015. Preventive effects of tocotrienol on stress-induced gastric mucosal lesions and its relation to oxidative and inflammatory biomarkers. PLoS One. 1010(10):e0139348. doi:10.1371/journal.pone.0139348..
    1. Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P, et al. 2016. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol. 101(7):801–810. doi:10.1113/EP085746.
    1. Xu C, Sun R, Qiao X, Xu C, Shang X, Niu W, Chao Y. 2014. Effect of vitamin e supplementation on intestinal barrier function in rats exposed to high altitude hypoxia environment. Korean J Physiol Pharmacol. 18(4):313–320. doi:10.4196/kjpp.2014.18.4.313.
    1. Fässler C, Gill CIR, Arrigoni E, Rowland I, Amadò R. 2007. Fermentation of resistant starches: influence of in vitro models on colon carcinogenesis. Nutr Cancer. 58(1):85–92. doi:10.1080/01635580701308232.
    1. Peng L, He Z, Chen W, Holzman IR, Lin J. 2007. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 61(1):37–41. doi:10.1203/01.pdr.0000250014.92242.f3.
    1. Vancamelbeke M, Vermeire S. 2017. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 11(9):821–834. doi:10.1080/17474124.2017.1343143.
    1. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N. 2013. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 121(24):4930–4937. doi:10.1182/blood-2013-02-486217.
    1. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol. 1993;64:456–460.
    1. Araki S, Suzuki M, Fujimoto M, Kimura M. 1995. Enhancement of resistance to bacterial infection in mice by vitamin B2. J Vet Med Sci. 57(4):599–602. doi:10.1292/jvms.57.599.
    1. Kallio J, Jaakkola M, Mäki M, Kilpeläinen P, Virtanen V. 2012. Vitamin C inhibits staphylococcus aureus growth and enhances the inhibitory effect of quercetin on growth of Escherichia coli in vitro. Planta Med. 78(17):1824–1830. doi:10.1055/s-0032-1315388.
    1. Castillo Y, Suzuki J, Watanabe K, Shimizu T, Watarai M, Ling E. 2016. Effect of vitamin A on listeria monocytogenes infection in a silkworm model. Plos One. 11(9):e0163747. doi:10.1371/journal.pone.0163747.
    1. Schellekens RCA, Stellaard F, Mitrovic D, Stuurman FE, Kosterink JGW, Frijlink HW. 2008. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings. J Control Release. 132(2):91–98. doi:10.1016/j.jconrel.2008.08.008.

Source: PubMed

3
Abonner