The potential impact of hematocrit correction on evaluation of tacrolimus target exposure in pediatric kidney transplant patients

Anne M Schijvens, Fransje H S van Hesteren, Elisabeth A M Cornelissen, Charlotte M H H T Bootsma-Robroeks, Roger J M Brüggemann, David M Burger, Saskia N de Wildt, Michiel F Schreuder, Rob Ter Heine, Anne M Schijvens, Fransje H S van Hesteren, Elisabeth A M Cornelissen, Charlotte M H H T Bootsma-Robroeks, Roger J M Brüggemann, David M Burger, Saskia N de Wildt, Michiel F Schreuder, Rob Ter Heine

Abstract

Background: Tacrolimus is an important immunosuppressive agent with high intra- and inter-individual pharmacokinetic variability and a narrow therapeutic index. As tacrolimus extensively accumulates in erythrocytes, hematocrit is a key factor in the interpretation of tacrolimus whole blood concentrations. However, as hematocrit values in pediatric kidney transplant patients are highly variable after kidney transplantation, translating whole blood concentration targets without taking hematocrit into consideration is theoretically incorrect. The aim of this study is to evaluate the potential impact of hematocrit correction on tacrolimus target exposure in pediatric kidney transplant patients.

Methods: Data were obtained from 36 pediatric kidney transplant patients. Two hundred fifty-five tacrolimus whole blood samples were available, together responsible for 36 area under the concentration-time curves (AUCs) and trough concentrations. First, hematocrit corrected concentrations were derived using a formula describing the relationship between whole blood concentrations, hematocrit, and plasma concentrations. Subsequently, target exposure was evaluated using the converted plasma target concentrations. Ultimately, differences in interpretation of target exposure were identified and evaluated.

Results: In total, 92% of our patients had lower hematocrit (median 0.29) than the reference value of adult kidney transplant patients. A different evaluation of target exposure for either trough level, AUC, or both was defined in 42% of our patients, when applying hematocrit corrected concentrations.

Conclusion: A critical role for hematocrit in therapeutic drug monitoring of tacrolimus in pediatric kidney transplant patients is suggested in this study. Therefore, we believe that hematocrit correction could be a step towards improvement of tacrolimus dose individualization.

Keywords: Hematocrit; Kidney transplantation; Pediatrics; Tacrolimus; Therapeutic drug monitoring (TDM).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Nomograph of predicted tacrolimus plasma trough concentrations corrected for hematocrit
Fig. 2
Fig. 2
Whole blood and predicted plasma AUCs0–12 h and trough concentrations compared to the target whole blood and predicted target plasma concentrations

References

    1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43:623–653. doi: 10.2165/00003088-200443100-00001.
    1. Krischock LA, van Stralen KJ, Verrina E, Tizard EJ, Bonthuis M, Reusz G, Hussain FK, Jankauskiene A, Novljan G, Spasojevic-Dimitrijeva B, Podracka L, Zaller V, Jager KJ, Schaefer F, ESPN/ERA-EDTA Registry Anemia in children following renal transplantation-results from the ESPN/ERA-EDTA Registry. Pediatr Nephrol. 2016;31:325–333. doi: 10.1007/s00467-015-3201-8.
    1. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, Kuypers D, Le Meur Y, Marquet P, Oellerich M, Thervet E, Toenshoff B, Undre N, Weber LT, Westley IS, Mourad M. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit. 2009;31:139–152. doi: 10.1097/FTD.0b013e318198d092.
    1. Laskow DA, Vincenti F, Neylan JF, Mendez R, Matas AJ. An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States Multicenter FK506 Kidney Transplant Group. Transplantation. 1996;62:900–905. doi: 10.1097/00007890-199610150-00005.
    1. Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, Campbell SB, Leary DR, Staatz CE. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol. 2011;71:207–223. doi: 10.1111/j.1365-2125.2010.03815.x.
    1. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, Loirat C, Cochat P, Cloarec S, Andre JL, Garaix F, Bensman A, Fakhoury M, Jacqz-Aigrain E. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86:609–618. doi: 10.1038/clpt.2009.210.
    1. Andrews LM, Hesselink DA, van Gelder T, Koch BCP, Cornelissen EAM, Bruggemann RJM, van Schaik RHN, de Wildt SN, Cransberg K, de Winter BCM (2017) A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. 10.1007/s40262-017-0567-8
    1. Prytula AA, Cransberg K, Bouts AH, van Schaik RH, de Jong H, de Wildt SN, Mathot RA. The effect of weight and CYP3A5 genotype on the population pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients. Clin Pharmacokinet. 2016;55:1129–1143. doi: 10.1007/s40262-016-0390-7.
    1. de Wildt SN, van Schaik RH, Soldin OP, Soldin SJ, Brojeni PY, van der Heiden IP, Parshuram C, Nulman I, Koren G. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67:1231–1241. doi: 10.1007/s00228-011-1083-7.
    1. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti Vehaskari V. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9:162–169. doi: 10.1111/j.1399-3046.2005.00263.x.
    1. Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007;2:374–384. doi: 10.2215/CJN.03791106.
    1. Scholten EM, Cremers SC, Schoemaker RC, Rowshani AT, van Kan EJ, den Hartigh J, Paul LC, de Fijter JW. AUC-guided dosing of tacrolimus prevents progressive systemic overexposure in renal transplant recipients. Kidney Int. 2005;67:2440–2447. doi: 10.1111/j.1523-1755.2005.00352.x.
    1. Wallemacq PE, Verbeeck RK. Comparative clinical pharmacokinetics of tacrolimus in paediatric and adult patients. Clin Pharmacokinet. 2001;40:283–295. doi: 10.2165/00003088-200140040-00004.
    1. Storset E, Holford N, Midtvedt K, Bremer S, Bergan S, Asberg A. Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol. 2014;70:65–77. doi: 10.1007/s00228-013-1584-7.
    1. Jusko WJ, Piekoszewski W, Klintmalm GB, Shaefer MS, Hebert MF, Piergies AA, Lee CC, Schechter P, Mekki QA. Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther. 1995;57:281–290. doi: 10.1016/0009-9236(95)90153-1.
    1. Hebert MF, Zheng S, Hays K, Shen DD, Davis CL, Umans JG, Miodovnik M, Thummel KE, Easterling TR. Interpreting tacrolimus concentrations during pregnancy and postpartum. Transplantation. 2013;95:908–915. doi: 10.1097/TP.0b013e318278d367.
    1. Machida M, Takahara S, Ishibashi M, Hayashi M, Sekihara T, Yamanaka H. Effect of temperature and hematocrit on plasma concentration of FK 506. Transplant Proc. 1991;23:2753–2754.
    1. Undre NA, Schafer A. Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc. 1998;30:1261–1263. doi: 10.1016/S0041-1345(98)00234-6.
    1. Zheng S, Easterling TR, Umans JG, Miodovnik M, Calamia JC, Thummel KE, Shen DD, Davis CL, Hebert MF. Pharmacokinetics of tacrolimus during pregnancy. Ther Drug Monit. 2012;34:660–670. doi: 10.1097/FTD.0b013e3182708edf.
    1. Malyszko J, Oberbauer R, Watschinger B. Anemia and erythrocytosis in patients after kidney transplantation. Transpl Int. 2012;25:1013–1023. doi: 10.1111/j.1432-2277.2012.01513.x.
    1. Larkins N, Matsell DG. Tacrolimus therapeutic drug monitoring and pediatric renal transplant graft outcomes. Pediatr Transplant. 2014;18:803–809. doi: 10.1111/petr.12369.
    1. Martial LC, Verstegen RH, Cornelissen EA, Aarnoutse RE, Schreuder MF, Bruggemann RJ. A preliminary study searching for the right dose of tacrolimus in very young (</=4 years) renal transplant patients. J Pharm Pharmacol. 2016;68:1366–1372. doi: 10.1111/jphp.12639.
    1. Grenda R, Watson A, Vondrak K, Webb NJ, Beattie J, Fitzpatrick M, Saleem MA, Trompeter R, Milford DV, Moghal NE, Hughes D, Perner F, Friman S, Van Damme-Lombaerts R, Janssen F. A prospective, randomized, multicenter trial of tacrolimus-based therapy with or without basiliximab in pediatric renal transplantation. Am J Transplant. 2006;6:1666–1672. doi: 10.1111/j.1600-6143.2006.01367.x.
    1. Montini G, Ujka F, Varagnolo C, Ghio L, Ginevri F, Murer L, Thafam BS, Carasi C, Zacchello G, Plebani M. The pharmacokinetics and immunosuppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol. 2006;21:719–724. doi: 10.1007/s00467-006-0014-9.
    1. Grenda R, Watson A, Trompeter R, Tonshoff B, Jaray J, Fitzpatrick M, Murer L, Vondrak K, Maxwell H, van Damme-Lombaerts R, Loirat C, Mor E, Cochat P, Milford DV, Brown M, Webb NJ. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010;10:828–836. doi: 10.1111/j.1600-6143.2010.03047.x.
    1. Moes DJ, Press RR, den Hartigh J, van der Straaten T, de Fijter JW, Guchelaar HJ. Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet. 2012;51:467–480. doi: 10.2165/11599710-000000000-00000.
    1. Storset E, Holford N, Hennig S, Bergmann TK, Bergan S, Bremer S, Asberg A, Midtvedt K, Staatz CE. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharmacol. 2014;78:509–523. doi: 10.1111/bcp.12361.
    1. de Jonge H, Vanhove T, de Loor H, Verbeke K, Kuypers DR. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit. Br J Clin Pharmacol. 2015;80:548–559. doi: 10.1111/bcp.12703.
    1. Benkali K, Premaud A, Picard N, Rerolle JP, Toupance O, Hoizey G, Turcant A, Villemain F, Le Meur Y, Marquet P, Rousseau A. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin Pharmacokinet. 2009;48:805–816. doi: 10.2165/11318080-000000000-00000.
    1. Hoogtanders K, van der Heijden J, Christiaans M, Edelbroek P, van Hooff JP, Stolk LM. Therapeutic drug monitoring of tacrolimus with the dried blood spot method. J Pharm Biomed Anal. 2007;44:658–664. doi: 10.1016/j.jpba.2006.11.023.
    1. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–637. doi: 10.1681/ASN.2008030287.
    1. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther. 2012;92:366–375. doi: 10.1038/clpt.2012.109.
    1. Ekberg H, Mamelok RD, Pearson TC, Vincenti F, Tedesco-Silva H, Daloze P. The challenge of achieving target drug concentrations in clinical trials: experience from the symphony study. Transplantation. 2009;87:1360–1366. doi: 10.1097/TP.0b013e3181a23cb2.
    1. Staatz CE, Tett SE. Clinical pharmacokinetics of once-daily tacrolimus in solid-organ transplant patients. Clin Pharmacokinet. 2015;54:993–1025. doi: 10.1007/s40262-015-0282-2.
    1. Zahir H, McCaughan G, Gleeson M, Nand RA, McLachlan AJ. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br J Clin Pharmacol. 2004;57:298–309. doi: 10.1046/j.1365-2125.2003.02008.x.
    1. Piekoszewski W, Jusko WJ. Plasma protein binding of tacrolimus in humans. J Pharm Sci. 1993;82:340–341. doi: 10.1002/jps.2600820325.

Source: PubMed

3
Abonner