Interferon pathway in SLE: one key to unlocking the mystery of the disease

Lars Rönnblom, Dag Leonard, Lars Rönnblom, Dag Leonard

Abstract

SLE is characterised by an activation of the interferon (IFN) system, which leads to an increased expression of IFN-regulated genes. The reasons behind the IFN signature in SLE are (1) the existence of endogenous IFN inducers, (2) activation of several IFN-producing cell types, (3) production of many different IFNs, (4) a genetic setup promoting IFN production and (5) deficient negative feedback mechanisms. The consequences for the immune system is a continuous stimulation to an immune response, and for the patient a number of different organ manifestations leading to typical symptoms for SLE. In the current review, we will present the existing knowledge of the IFN system and pathway activation in SLE. We will also discuss how this information can contribute to our understanding of both the aetiopathogenesis and some organ manifestations of the disease. We will put forward some issues that are unresolved and should be clarified in order to make a proper stratification of patients with SLE, which seems important when selecting a therapy aiming to downregulate the IFN system.

Keywords: interferon; plasmacytoid dendritic cell; systemic lupus erythematosus.

Conflict of interest statement

Competing interests: LR has received a research grant from AstraZeneca and received honoraria for scientific advice from Biogen.

Figures

Figure 1
Figure 1
Interferon receptors and signalling. The interferons are classified into three types, which bind to distinct receptors. This induces activation of overlapping pathways resulting in expression of different genes. GAS, interferon-gamma activated sequence; IFN, interferon; IFNAR, interferon alpha receptor; IFNGR, interferon gamma receptor; IFN-λR1, interferon lambda receptor 1; IL-10Rβ, interleukin-10 receptor β; IRF, interferon regulatory factor; ISGF3, interferon-stimulated gene factor 3; ISRE, interferon-stimulated response elements; JAK, Janus kinase; STAT, signal transducer and activator of transcription; TYK2, tyrosine kinase 2.
Figure 2
Figure 2
Inducers and regulators of IFN-α production by plasmacytoid dendritic cell. APC, antigen-presenting cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; IC, immune complex; IFN, interferon; IL-3, interleukin 3; LFA1, lymphocyte function–associated antigen 1; MIP-1β, macrophage inflammatory protein-1β; NET, neutrophil extracellular traps; PECAM-1, platelet and endothelial cell adhesion molecule 1; ROS, reactive oxygen species.
Figure 3
Figure 3
Schematic picture of the type I interferon production and different nucleic acid sensors. cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; DAI, DNA-dependent activator of IFN-regulatory factors; DDX41, DEAD-box helicase 41; DNA-PKcs, DNA-dependent protein kinase; ER, endoplasmatic reticulum; FCGRIIA, Fc-gamma receptor II A; IC, immune complex; IFI16, gamma-interferon-inducible protein 16; IRAK, interleukin-1 receptor–associated kinase; IRF, interferon regulatory factor; MAVS, mitochondrial antiviral-signalling protein; MDA5, melanoma differentiation–associated protein 5; MyD88, myeloid differentiation primary response 88; NET, neutrophil extracellular traps; RIG-I, retinoic acid–inducible gene I; STING, stimulator of interferon genes; TLR, Toll-like receptor; TRAF6, TNF receptor–associated factors; TREX1, three prime repair exonuclease 1.
Figure 4
Figure 4
Effect of interferons (IFNs) on different cell types. NET, neutrophil extracellular traps.

References

    1. Bennett L, Palucka AK, Arce E, et al. . Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711–23. 10.1084/jem.20021553
    1. Baechler EC, Batliwalla FM, Karypis G, et al. . Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610–5. 10.1073/pnas.0337679100
    1. Crow MK, Kirou KA, Wohlgemuth J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 2003;36:481–90. 10.1080/08916930310001625952
    1. Han G-M, Chen S-L, Shen N, et al. . Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun 2003;4:177–86. 10.1038/sj.gene.6363966
    1. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957;147:258–67.
    1. Billharz R, Zeng H, Proll SC, et al. . The NS1 protein of the 1918 pandemic influenza virus blocks host interferon and lipid metabolism pathways. J Virol 2009;83:10557–70. 10.1128/JVI.00330-09
    1. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32. 10.1111/j.0105-2896.2004.00204.x
    1. Eloranta M-L, Alm GV, Rönnblom L. Disease mechanisms in rheumatology—tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. Arthritis Rheum 2013;65:853–63. 10.1002/art.37821
    1. Rönnblom L, Alm GV. A pivotal role for the natural interferon α–producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 2001;194:F59–64. 10.1084/jem.194.12.f59
    1. Barrat FJ, Elkon KB, Fitzgerald KA. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev Med 2016;67:323–36. 10.1146/annurev-med-052814-023338
    1. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005;5:375–86. 10.1038/nri1604
    1. Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol 2061;2018.
    1. Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res 2011;31:5–11. 10.1089/jir.2010.0126
    1. Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol 2019;56:67–75. 10.1016/j.coi.2018.10.007
    1. Hooks JJ, Moutsopoulos HM, Geis SA, et al. . Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979;301:5–8. 10.1056/NEJM197907053010102
    1. Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum 1982;25:401–6. 10.1002/art.1780250407
    1. Rönnblom LE, Alm GV, Oberg KE. Autoimmunity after alpha-interferon therapy for malignant carcinoid tumors. Ann Intern Med 1991;115:178–83. 10.7326/0003-4819-115-3-178
    1. Rönnblom LE, Alm GV, Oberg KE. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J Intern Med 1990;227:207–10. 10.1111/j.1365-2796.1990.tb00144.x
    1. Niewold TB, Adler JE, Glenn SB, et al. . Age- and sex-related patterns of serum interferon‐α activity in lupus families. Arthritis Rheum 2008;58:2113–9. 10.1002/art.23619
    1. Bengtsson AA, Sturfelt G, Truedsson L, et al. . Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus 2000;9:664–71. 10.1191/096120300674499064
    1. Kirou KA, Lee C, George S, et al. . Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005;52:1491–503. 10.1002/art.21031
    1. Feng X, Wu H, Grossman JM, et al. . Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum 2006;54:2951–62. 10.1002/art.22044
    1. Chiche L, Jourde-Chiche N, Whalen E, et al. . Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 2014;66:1583–95. 10.1002/art.38628
    1. Schoggins JW. Interferon-stimulated genes: what do they all do? Annu Rev Virol 2019;6 10.1146/annurev-virology-092818-015756
    1. Rönnblom L, Eloranta M-L. The interferon signature in autoimmune diseases. Curr Opin Rheumatol 2013;25:248–53. 10.1097/BOR.0b013e32835c7e32
    1. Zahn S, Rehkämper C, Kümmerer BM, et al. . Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J Invest Dermatol 2011;131:133–40. 10.1038/jid.2010.244
    1. Kyogoku C, Smiljanovic B, Grün JR, et al. . Cell-specific type I IFN signatures in autoimmunity and viral infection: what makes the difference? PLoS One 2013;8:e83776 10.1371/journal.pone.0083776
    1. Sarkar MK, Hile GA, Tsoi LC, et al. . Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 2018;77:1653–64. 10.1136/annrheumdis-2018-213197
    1. Cederblad B, Blomberg S, Vallin H, et al. . Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-α- producing cells. J Autoimmun 1998;11:465–70. 10.1006/jaut.1998.0215
    1. Vallin H, Blomberg S, Alm GV, et al. . Patients with systemic lupus erythematosus (SLE) have a circulating inducer of interferon-alpha (IFN-alpha) production acting on leucocytes resembling immature dendritic cells. Clin Exp Immunol 1999;115:196–202. 10.1046/j.1365-2249.1999.00772.x
    1. Vallin H, Perers A, Alm GV, et al. . Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 1999;163:6306–13.
    1. Båve U, Magnusson M, Eloranta M-L, et al. . FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J Immunol 2003;171:3296–302. 10.4049/jimmunol.171.6.3296
    1. Båve U, Alm GV, Rönnblom L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-α inducer. J Immunol 2000;165:3519–26. 10.4049/jimmunol.165.6.3519
    1. Lövgren T, Eloranta M-L, Båve U, et al. . Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 2004;50:1861–72. 10.1002/art.20254
    1. Leffler J, Ciacma K, Gullstrand B, et al. . A subset of patients with systemic lupus erythematosus fails to degrade DNA from multiple clinically relevant sources. Arthritis Res Ther 2015;17 10.1186/s13075-015-0726-y
    1. Lande R, Ganguly D, Facchinetti V, et al. . Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011;3:73ra19 10.1126/scitranslmed.3001180
    1. Garcia-Romo GS, Caielli S, Vega B, et al. . Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011;3:73ra20 10.1126/scitranslmed.3001201
    1. Lood C, Blanco LP, Purmalek MM, et al. . Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016;22:146–53. 10.1038/nm.4027
    1. Gestermann N, Di Domizio J, Lande R, et al. . Netting neutrophils activate autoreactive B cells in lupus. J Immunol 2018;200:3364–71. 10.4049/jimmunol.1700778
    1. Tian J, Avalos AM, Mao S-Y, et al. . Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007;8:487–96. 10.1038/ni1457
    1. Okuya K, Tamura Y, Saito K, et al. . Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 2010;184:7092–9. 10.4049/jimmunol.1000490
    1. Lande R, Gregorio J, Facchinetti V, et al. . Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–9. 10.1038/nature06116
    1. Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016;7:9 10.1186/s13100-016-0065-9
    1. Nakkuntod J, Avihingsanon Y, Mutirangura A, et al. . Hypomethylation of LINE-1 but not Alu in lymphocyte subsets of systemic lupus erythematosus patients. Clinica Chimica Acta 2011;412:1457–61. 10.1016/j.cca.2011.04.002
    1. Mavragani CP, Sagalovskiy I, Guo Q, et al. . Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol 2016;68:2686–96. 10.1002/art.39795
    1. Canesso MCC, Lemos L, Neves TC, et al. . The cytosolic sensor sting is required for intestinal homeostasis and control of inflammation. Mucosal Immunol 2018;11:820–34. 10.1038/mi.2017.88
    1. Manfredo Vieira S, Hiltensperger M, Kumar V, et al. . Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018;359:1156–61. 10.1126/science.aar7201
    1. Blomberg S, Eloranta ML, Cederblad B, et al. . Presence of cutaneous interferon-alpha producing cells in patients with systemic lupus erythematosus. Lupus 2001;10:484–90. 10.1191/096120301678416042
    1. Farkas L, Beiske K, Lund-Johansen F, et al. . Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 2001;159:237–43. 10.1016/S0002-9440(10)61689-6
    1. Tucci M, Quatraro C, Lombardi L, et al. . Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum 2008;58:251–62. 10.1002/art.23186
    1. Rowland SL, Riggs JM, Gilfillan S, et al. . Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J Exp Med 2014;211:1977–91. 10.1084/jem.20132620
    1. Sisirak V, Ganguly D, Lewis KL, et al. . Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J Exp Med 2014;211:1969–76. 10.1084/jem.20132522
    1. Furie R, Werth VP, Merola JF, et al. . Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest 2019;129:1359–71. 10.1172/JCI124466
    1. Porat A, Giat E, Kowal C, et al. . DNA-mediated interferon signature induction by SLE serum occurs in monocytes through two pathways: a mechanism to inhibit both pathways. Front Immunol 2018;9:2824 10.3389/fimmu.2018.02824
    1. Clancy RM, Markham AJ, Reed JH, et al. . Targeting downstream transcription factors and epigenetic modifications following Toll-like receptor 7/8 ligation to forestall tissue injury in anti-Ro60 associated heart block. J Autoimmun 2016;67:36–45. 10.1016/j.jaut.2015.09.003
    1. Denny MF, Yalavarthi S, Zhao W, et al. . A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 2010;184:3284–97. 10.4049/jimmunol.0902199
    1. Palanichamy A, Bauer JW, Yalavarthi S, et al. . Neutrophil-mediated IFN activation in the bone marrow alters B cell development in human and murine systemic lupus erythematosus. J Immunol 2014;192:906–18. 10.4049/jimmunol.1302112
    1. Hervier B, Beziat V, Haroche J, et al. . Phenotype and function of natural killer cells in systemic lupus erythematosus: excess interferon-γ production in patients with active disease. Arthritis Rheum 2011;63:1698–706. 10.1002/art.30313
    1. Lin S-C, Kuo C-C, Tsao J-T, et al. . Profiling the expression of interleukin (IL)-28 and IL-28 receptor α in systemic lupus erythematosus patients. Eur J Clin Invest 2012;42:61–9. 10.1111/j.1365-2362.2011.02557.x
    1. Hagberg N, Berggren O, Leonard D, et al. . IFN-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes is promoted by NK cells via MIP-1β and LFA-1. J Immunol 2011;186:5085–94. 10.4049/jimmunol.1003349
    1. Berggren O, Hagberg N, Weber G, et al. . B lymphocytes enhance interferon-α production by plasmacytoid dendritic cells. Arthritis Rheum 2012;64:3409–19. 10.1002/art.34599
    1. Leonard D, Eloranta M-L, Hagberg N, et al. . Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis 2016;75:1728–34. 10.1136/annrheumdis-2015-208055
    1. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. . Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 2017;8:16021 10.1038/ncomms16021
    1. Deng Y, Tsao BP. Updates in lupus genetics. Curr Rheumatol Rep 2017;19:68 10.1007/s11926-017-0695-z
    1. Thorlacius GE, Wahren-Herlenius M, Rönnblom L. An update on the role of type I interferons in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2018;30:471–81. 10.1097/BOR.0000000000000524
    1. Remmers EF, Plenge RM, Lee AT, et al. . STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007;357:977–86. 10.1056/NEJMoa073003
    1. Svenungsson E, Gustafsson J, Leonard D, et al. . A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. Ann Rheum Dis 2010;69:834–40. 10.1136/ard.2009.115535
    1. Bolin K, Sandling JK, Zickert A, et al. . Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS One 2013;8:e84450 10.1371/journal.pone.0084450
    1. Taylor KE, Remmers EF, Lee AT, et al. . Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 2008;4:e1000084 10.1371/journal.pgen.1000084
    1. Hagberg N, Joelsson M, Leonard D, et al. . The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE. Ann Rheum Dis 2018;77:1070–7. 10.1136/annrheumdis-2017-212794
    1. Hagberg N, Rönnblom L. Interferon-α enhances the IL-12-induced STAT4 activation selectively in carriers of the STAT4 SLE risk allele rs7574865[T]. Ann Rheum Dis 2019;78:429–31. 10.1136/annrheumdis-2018-213836
    1. van Vollenhoven RF, Hahn BH, Tsokos GC, et al. . Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 2018;392:1330–9. 10.1016/S0140-6736(18)32167-6
    1. Lee-Kirsch MA. The type I interferonopathies. Annu Rev Med 2017;68:297–315. 10.1146/annurev-med-050715-104506
    1. Almlöf JC, Nystedt S, Leonard D, et al. . Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum Genet 2019;138:141–50. 10.1007/s00439-018-01966-7
    1. Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018;5:e000285 10.1136/lupus-2018-000285
    1. Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D, et al. . DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis 2018;77:736–43. 10.1136/annrheumdis-2017-212379
    1. Ulff-Møller CJ, Asmar F, Liu Y, et al. . Twin DNA methylation profiling reveals flare-dependent interferon signature and B cell promoter hypermethylation in systemic lupus erythematosus. Arthritis Rheumatol 2018;70:878–90. 10.1002/art.40422
    1. Attallah AM, Strong DM. Differential effects of interferon on the MHC expression of human lymphocytes. enhanced expression of HLA without effect on Ia. Int Arch Allergy Appl Immunol 1979;60:101–5.
    1. CF Y, Peng WM, Oldenburg J, et al. . Human plasmacytoid dendritic cells support Th17 cell effector function in response to TLR7 ligation. J Immunol 2010;184:1159–67.
    1. Kiefer K, Oropallo MA, Cancro MP, et al. . Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 2012;90:498–504. 10.1038/icb.2012.10
    1. Sjöstrand M, Johansson A, Aqrawi L, et al. . The expression of BAFF is controlled by IRF transcription factors. J Immunol 2016;196:91–6. 10.4049/jimmunol.1501061
    1. Hagberg N, Theorell J, Hjorton K, et al. . Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol 2015;67:1000–11. 10.1002/art.38999
    1. Biron CA, Nguyen KB, Pien GC, et al. . Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189–220. 10.1146/annurev.immunol.17.1.189
    1. Thacker SG, Berthier CC, Mattinzoli D, et al. . The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J Immunol 2010;185:4457–69. 10.4049/jimmunol.1001782
    1. Denny MF, Thacker S, Mehta H, et al. . Interferon-Alpha promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 2007;110:2907–15. 10.1182/blood-2007-05-089086
    1. Lee PY, Li Y, Richards HB, et al. . Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum 2007;56:3759–69. 10.1002/art.23035
    1. Buie JJ, Renaud LL, Muise-Helmericks R, et al. . IFN-α negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. J Immunol 2017;199:1979–88. 10.4049/jimmunol.1600108
    1. Li J, Fu Q, Cui H, et al. . Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheum 2011;63:492–502. 10.1002/art.30165
    1. Lood C, Amisten S, Gullstrand B, et al. . Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 2010;116:1951–7. 10.1182/blood-2010-03-274605
    1. Liu Y, Kaplan MJ. Cardiovascular disease in systemic lupus erythematosus: an update. Curr Opin Rheumatol 2018;30:1–8. 10.1097/BOR.0000000000000528
    1. Crow YJ, Lebon P, Casanova J-L, et al. . A brief historical perspective on the pathological consequences of excessive type I interferon exposure in vivo. J Clin Immunol 2018;38:694–8. 10.1007/s10875-018-0543-6
    1. Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity 2019;50:907–23. 10.1016/j.immuni.2019.03.025
    1. Pollard KM, Cauvi DM, Toomey CB, et al. . Interferon-γ and systemic autoimmunity. Discov Med 2013;16:123–31.
    1. Rönnblom L, Eloranta M-L, Alm GV. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 2006;54:408–20. 10.1002/art.21571
    1. Peck-Radosavljevic M, Wichlas M, Homoncik-Kraml M, et al. . Rapid suppression of hematopoiesis by standard or pegylated interferon-α. Gastroenterology 2002;123:141–51. 10.1053/gast.2002.34175
    1. Weckerle CE, Franek BS, Kelly JA, et al. . Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum 2011;63:1044–53. 10.1002/art.30187
    1. Jeremiah N, Neven B, Gentili M, et al. . Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 2014;124:5516–20. 10.1172/JCI79100
    1. Braunstein I, Klein R, Okawa J, et al. . The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br J Dermatol 2012;166:971–5. 10.1111/j.1365-2133.2012.10825.x
    1. Wenzel J, Wörenkämper E, Freutel S, et al. . Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J Pathol 2005;205:435–42. 10.1002/path.1721
    1. Shipman WD, Chyou S, Ramanathan A, et al. . A protective Langerhans cell–keratinocyte axis that is dysfunctional in photosensitivity. Sci Transl Med 2018;10:eaap9527 10.1126/scitranslmed.aap9527
    1. Li TM, Shwartz N, Shipman WD, et al. . Type I interferon modulates ADAM17 activity in photosensitive lupus mouse models. Lupus Sci Med 2019;13.
    1. Merrill JT, Furie R, Werth VP, et al. . Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med 2018;5:e000284 10.1136/lupus-2018-000284
    1. Wallace DJ, Furie RA, Tanaka Y, et al. . Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018;392:222–31. 10.1016/S0140-6736(18)31363-1
    1. Sanchez GAM, Reinhardt A, Ramsey S, et al. . JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 2018;128:3041–52. 10.1172/JCI98814
    1. Toukap AN, Galant C, Theate I, et al. . Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 2007;56:1579–88. 10.1002/art.22578
    1. Catalina MD, Bachali P, Geraci NS, et al. . Gene expression analysis delineates the potential roles of multiple interferons in systemic lupus erythematosus. Commun Biol 2019;2 10.1038/s42003-019-0382-x
    1. Higuchi A, Takanashi Y, Tsuzuki N, et al. . Production of interferon-beta by fibroblast cells on membranes prepared with RGD-containing peptides. J Biomed Mater Res A 2003;65:369–78. 10.1002/jbm.a.10428
    1. Watanabe S, Imaizumi T, Tsuruga K, et al. . Glomerular expression of myxovirus resistance protein 1 in human mesangial cells: possible activation of innate immunity in the pathogenesis of lupus nephritis. Nephrology 2013;18:833–7. 10.1111/nep.12155
    1. Castellano G, Cafiero C, Divella C, et al. . Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res Ther 2015;17 10.1186/s13075-015-0588-3
    1. Peterson KS, Huang J-F, Zhu J, et al. . Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 2004;113:1722–33. 10.1172/JCI200419139
    1. Shimizu Y, Yasuda S, Kimura T, et al. . Interferon-Inducible Mx1 protein is highly expressed in renal tissues from treatment-naïve lupus nephritis, but not in those under immunosuppressive treatment. Mod Rheumatol 2018;28:661–9. 10.1080/14397595.2017.1404711
    1. Migliorini A, Angelotti ML, Mulay SR, et al. . The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol 2013;183:431–40. 10.1016/j.ajpath.2013.04.017
    1. Lebon P, Lenoir GR, Fischer A, et al. . Synthesis of intrathecal interferon in systemic lupus erythematosus with neurological complications. Br Med J 1983;287:1165–7. 10.1136/bmj.287.6400.1165
    1. Shiozawa S, Kuroki Y, Kim M, et al. . Interferon-alpha in lupus psychosis. Arthritis Rheum 1992;35:417–22. 10.1002/art.1780350410
    1. Raison CL, Borisov AS, Broadwell SD, et al. . Depression during pegylated interferon-alpha plus ribavirin therapy: prevalence and prediction. J Clin Psychiatry 2005;66:41–8.
    1. Santer DM, Yoshio T, Minota S, et al. . Potent induction of IFN-α and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus. J Immunol 2009;182:1192–201. 10.4049/jimmunol.182.2.1192
    1. Bialas AR, Presumey J, Das A, et al. . Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 2017;546:539–43. 10.1038/nature22821
    1. Felten R, Dervovic E, Chasset F, et al. . The 2018 pipeline of targeted therapies under clinical development for systemic lupus erythematosus: a systematic review of trials. Autoimmun Rev 2018;17:781–90. 10.1016/j.autrev.2018.02.011
    1. Baccala R, Gonzalez-Quintial R, Schreiber RD, et al. . Anti-IFN-α/β receptor antibody treatment ameliorates disease in lupus-predisposed mice. J Immunol 2012;189:5976–84. 10.4049/jimmunol.1201477
    1. Munroe ME, Lu R, Zhao YD, et al. . Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann Rheum Dis 2016;75:2014–21. 10.1136/annrheumdis-2015-208140
    1. El-Sherbiny YM, Psarras A, Md Yusof MY, et al. . Publisher correction: A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci Rep 2018;8:14846 10.1038/s41598-018-33062-1
    1. Der E, Suryawanshi H, Morozov P, et al. . Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol 2019;20:915–27. 10.1038/s41590-019-0386-1
    1. Reid S, Alexsson A, Frodlund M, et al. . A high genetic risk score is associated with early disease onset, organ damage and decreased survival in systemic lupus erythematosus. Lupus Sci Med 2019;6:A154–5.

Source: PubMed

3
Abonner