Mechanisms of Chemotherapy-Induced Peripheral Neuropathy

Renata Zajączkowska, Magdalena Kocot-Kępska, Wojciech Leppert, Anna Wrzosek, Joanna Mika, Jerzy Wordliczek, Renata Zajączkowska, Magdalena Kocot-Kępska, Wojciech Leppert, Anna Wrzosek, Joanna Mika, Jerzy Wordliczek

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonlyused drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.

Keywords: anticancer drugs; cancer pain; chemotherapy-induced neuropathy; drug neurotoxicity; pathophysiological mechanisms.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
The mechanisms of chemotherapy-induced peripheral neuropathy (CIPN) induced by platinum-based drugs: Platinum-based drugs induce the activation of glia cells, which leads to the activation of the attraction and activation of immune cells and to the release and elevation of pro-inflammatory cytokines (interleukins and chemokines), which results in nociceptor sensitization and hyperexcitability of peripheral neurons, and (together with ROS) damage the blood–brain barrier. These processes lead to the development of neuroinflammation. Mitochondrial damage caused by platinum-based drugs leads to an increased production of reactive oxygen species (ROS), which leads to enzyme, protein and lipid damage within neurons as well as the dysregulation of calcium homeostasis, which induces apoptotic changes in peripheral nerves and in DRG cells. Platinum-based drugs also alter the activity Na+, K+ and TRP ion channels, resulting in the hyperexcitability of peripheral neurons. All of the above-described processes have the potential to alter the excitability of peripheral neurons.
Figure 2
Figure 2
The mechanisms of CIPN induced by thalidomide: Thalidomide downregulates TNF-α and inhibits NF-κB, which leads to the dysregulation of neurotrophins and their receptors and, in consequence, accelerates neuronal cell death. Moreover, the antiangiogenic effect induced by thalidomide causes secondary ischemia and hypoxia of nerve fibres and, subsequently, irreversible damage of sensory neurons. The activation of the dihydroxy metabolite of thalidomide causes the extensive release and activation of ROS and activates DNA cleavage, though further preclinical and clinical trials are needed to confirm the presence of such a mechanism in thalidomide-induced peripheral neuropathy.
Figure 3
Figure 3
The mechanisms of CIPN induced by taxanes: Taxanes cause microtubule disruption, which impairs axonal transport and leads to Wallerian degeneration, altered activity of ion channels and hyperexcitability of peripheral neurons. Taxanes also modify the expression and function of Na+, K+ and TRP ion channels, which results in the hyperexcitability of peripheral neurons. Taxane-induced mitochondrial damage contributes to the increased production of reactive oxygen species (ROS), which leads to enzyme, protein and lipid damage as well as the dysregulation of calcium homeostasis within neurons, which induces apoptotic changes and the demyelination of peripheral nerves. These processes alter the excitability of peripheral neurons. The activation of microglia and astrocytes by taxanes also leads to the activation of attraction and activation of immune cells and to the release and elevation of pro-inflammatory cytokines (interleukins and chemokines), which results in the nociceptor sensitization and hyperexcitability of peripheral neurons. These processes lead to nociceptor sensitization and the development of neuroinflammation.
Figure 4
Figure 4
The mechanisms of CIPN induced by epothilones: Epothilones cause microtubule disruption, which impairs axonal transport and leads to Wallerian degeneration, the altered activity of ion channels and the hyperexcitability of peripheral neurons. Furthermore, the damage to mitochondria by epothilones leads to an increased production of reactive oxygen species (ROS), resulting in enzyme, protein and lipid damage within neurons as well as apoptotic changes to peripheral nerve. These processes lead to altered excitability of peripheral neurons. ROS release and the attraction and activation of T-lymphocytes and monocytes also induces the release and elevation of pro-inflammatory cytokines (interleukins and chemokines), the activation of immune cells and the development of neuroinflammation.
Figure 5
Figure 5
The mechanisms of CIPN induced by vinca alkaloids: Vinca alkaloids cause changes to large axons and DRG neurons, which leads to Wallerian degeneration, the altered activity of ion channels and the hyperexcitability of peripheral neurons. Moreover, the inhibition of polymerization into microtubules inhibits axonal transport, which leads to distal axonopathy. These processes alter the excitability of peripheral neurons, whereas the attraction and activation of immune cells by vinca alkaloids causes the release and elevation of pro-inflammatory cytokines (interleukins and chemokines), which results in neuroinflammation.
Figure 6
Figure 6
The mechanisms of CIPN induced by protease inhibitors: Protease inhibitors increase the metabolism of sphingolipids in astrocytes, which leads to the formation of ceramide, sphingosine-1 phosphate (S1P) and dihydrosphingosine-1-phosphate (DH-S1P), which by binding to astrocyte receptors, increase the release of presynaptic glutamate at the level of the dorsal horn, which leads to the development of neuropathic pain. Moreover, bortezomib-induced mitochondrial damage increases the production of reactive oxygen species (ROS), which results in enzyme, protein and lipid damage within the neurons as well as induces apoptotic changes in peripheral nerves. These processes alter the excitability of peripheral neurons, whereas the attraction and activation of T-lymphocytes and monocytes, as well as the increases in the production of reactive oxygen species (ROS) induce the release and elevation of pro-inflammatory cytokines (interleukins and chemokines). These processes lead to nociceptor sensitization, the hyperexcitability of peripheral neurons and the development of neuroinflammation.

References

    1. American Society of Clinical Oncology The state of cancer care in America, 2014: A report by the American Society of Clinical Oncology. J. Oncol. Pract. 2014;10:119–142. doi: 10.1200/JOP.2014.001386.
    1. Kent E.E., Forsythe L., Scoppa S., Hachey M., Rowland J.H. Cancer survivors in the United States: Prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol. Biomark. Prev. 2013;22:561–570.
    1. Glare P.A., Davies P.S., Finlay E., Gulati A., Lemanne D., Moryl N., Oeffinger K.C., Paice J.A., Stubblefield M.D., Syrjala K.L. Pain in Cancer Survivors. J. Clin. Oncol. 2014;32:1739–1747. doi: 10.1200/JCO.2013.52.4629.
    1. National Cancer Institute: Chemotherapy Side Effects Sheets. [(accessed on 2 May 2014)]; Available online: .
    1. Cioroiu C., Weimer L.H. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr. Neurol. Neurosci. Rep. 2017;17:47. doi: 10.1007/s11910-017-0757-7.
    1. Banach M., Juranek J.K., Zygulska A.L. Chemotherapy-induced neuropathies—A growing problem for patients and health care providers. Brain Behav. 2016;7:e00558. doi: 10.1002/brb3.558.
    1. Hershman D.L., Lacchetti C., Dworkin R.H., Lavoie-Smith E.M., Bleeker J., Cavaletti G., Chauhan C., Gavin P., Lavino A., Lustberg M.B., et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2014;32:1941–1967. doi: 10.1200/JCO.2013.54.0914.
    1. Fallon M.T. Neuropathic pain in cancer. Br. J. Anaesth. 2013;111:105–111. doi: 10.1093/bja/aet208.
    1. Seretny M., Currie G.L., Sena E.S., Ramnarine S., Grant R., MacLeod M.R., Colvin L.A., Fallon M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014;155:2461–2470. doi: 10.1016/j.pain.2014.09.020.
    1. Argyriou A.A., Cavaletti G., Briani C., Velasco R., Bruna J., Campagnolo M., Alberti P., Bergamo F., Cortinovis D., Cazzaniga M., et al. Clinical pattern and associations of oxaliplatin acute neurotoxicity: A prospective study in 170 patients with colorectal cancer. Cancer. 2013;119:438–444. doi: 10.1002/cncr.27732.
    1. Maestri A., De Pasquale Ceratti A., Cundari S., Zanna C., Cortesi E., Crino L. A pilot study on the effect of acetyl-L-carnitine in paclitaxel- andcisplatin-induced peripheral neuropathy. Tumori. 2005;91:135–138.
    1. Starobova H., Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017;10:174. doi: 10.3389/fnmol.2017.00174.
    1. Cavaletti G., Alberti P., Frigeni B., Piatti M., Susani E. Chemotherapy-induced neuropathy. Curr. Treat. Options Neurol. 2011;13:180–190. doi: 10.1007/s11940-010-0108-3.
    1. Flatters S.J.L., Dougherty P.M., Colvin L.A. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): A narrative review. Br. J. Anaesth. 2017;119:737–749. doi: 10.1093/bja/aex229.
    1. Park S.B., Goldstein D., Krishnan A.V., Lin C.S., Friedlander M.L., Cassidy J., Koltzenburg M., Kiernan M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin. 2013;63:419–437. doi: 10.3322/caac.21204.
    1. Bernhardson B.M., Tishelman C., Rutqvist L.E. Chemosensory changes experienced by patients undergoing cancer chemotherapy: A qualitative interview study. J. Pain Symptom Manag. 2007;34:403–412. doi: 10.1016/j.jpainsymman.2006.12.010.
    1. Kolb N.A., Smith A.G., Singleton J.R., Beck S.L., Stoddard G.J., Brown S., Mooney K. The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol. 2016;73:860–866. doi: 10.1001/jamaneurol.2016.0383.
    1. Mols F., van de Poll-Franse L.V., Vreugdenhil G., Beijers A.J., Kieffer J.M., Aaronson N.K., Husson O. Reference data of the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-CIPN20 Questionnaire in the general Dutch population. Eur. J. Cancer. 2016;69:28–38. doi: 10.1016/j.ejca.2016.09.020.
    1. Azhary H., Farooq M.U., Bhanushali M., Majid A., Kassab M.Y. Peripheral neuropathy: Differential diagnosis and management. Am. Fam. Phys. 2010;81:887–892.
    1. Jones D., Zhao F., Brell J., Lewis M.A., Loprinzi C.L., Weiss M., Fisch M.J. Neuropathic symptoms, quality of life, and clinician perception of patient care in medical oncology outpatients with colorectal, breast, lung, and prostate cancer. J. Cancer Surviv. 2015;9:1–10. doi: 10.1007/s11764-014-0379-x.
    1. Zhang X., Chen W.-W., Huang W.-J. Chemotherapy-induced peripheral neuropathy. Biomed. Rep. 2017;6:267–271. doi: 10.3892/br.2017.851.
    1. Kerckhove N., Collin A., Condé S., Chaleteix C., Pezet D., Balayssac D. Long-TermEffects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front. Pharmacol. 2017;8:86. doi: 10.3389/fphar.2017.00086.
    1. Areti A., Yerra V.G., Naidu V.G.M., Kumar A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–295. doi: 10.1016/j.redox.2014.01.006.
    1. Storey D.J., Sakala M., McLean C.M., Phillips H.A., Dawson L.K., Wall L.R., Fallon M.T., Clive S. Capecitabine combined with oxaliplatin (CapOx) in clinical practice: How significant is peripheral neuropathy? Ann. Oncol. 2010;21:1657–1661. doi: 10.1093/annonc/mdp594.
    1. Vanderhoop R.G., Vanderburg M.E.L., Huinink W.W.T., Vanhouwelingen J.C., Neijt J.P. Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer. 1990;66:1697–1702. doi: 10.1002/1097-0142(19901015)66:8<1697::AID-CNCR2820660808>;2-G.
    1. Krarup-Hansen A., Helweg-Larsen S., Schmalbruch H., Rorth M., Krarup C. Neuronal involvement in cisplatin neuropathy: Prospective clinical and neurophysiological studies. Brain. 2007;130:1076–1088. doi: 10.1093/brain/awl356.
    1. Mollman J.E., Glover D.J., Hogan W.M., Furman R.E. Cisplatin neuropathy. Risk factors, prognosis, and protection by WR-2721. Cancer. 1988;61:2192–2195. doi: 10.1002/1097-0142(19880601)61:11<2192::AID-CNCR2820611110>;2-A.
    1. Gregg R.W., Molepo J.M., Monpetit V.J.A., Mikael N.Z., Redmond D., Gadia M., Stewart D.J. Cisplatin neurotoxicity—The relationship between dosage, time, and platinum concentration in neurologic tissues, and morphological evidence of toxicity. J. Clin. Oncol. 1992;10:795–803. doi: 10.1200/JCO.1992.10.5.795.
    1. Schmoll H.J., Kollmannsberger C., Metzner B., Hartmann J.T., Schleucher N., Schoffski P., Schleicher J., Rick O., Beyer J., Hossfeld D., et al. German Testicular Cancer Study. Long term results of first-line sequential high-dose etoposide, ifosfamide, and cisplatin chemotherapy plus autologous stem cell support for patients with advanced metastatic germ cell cancer: An extended phase I/II study of the German Testicular Cancer Study Group. J. Clin. Oncol. 2003;21:4083–4091.
    1. Hausheer F.H., Schilsky R.L., Bain S., Berghorn E.J., Lieberman F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. Semin. Oncol. 2006;33:15–49. doi: 10.1053/j.seminoncol.2005.12.010.
    1. Leonard G.D., Wright M.A., Quinn M.G., Fioravanti S., Harold N., Schuler B., Thomas R.R., Grem J.L. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer. 2005;16:116. doi: 10.1186/1471-2407-5-116.
    1. Gebremedhn E.G., Shortland P.J., Mahns D.A. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: A systematic review. BMC Cancer. 2018;18:410. doi: 10.1186/s12885-018-4185-0.
    1. Argyriou A.A., Zolota V., Kyriakopoulou O., Kalofonos H.P. Toxic peripheral neuropathy associated with commonly used chemotherapeutic agents. J BUON. 2010;15:435–446.
    1. Deuis J.R., Zimmermann K., Romanovsky A.A., Possani L.D., Cabot P.J., Lewis R.J., Vetter I. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for NaV1.6 in peripheral pain pathways. Pain. 2013;154:1749–1757. doi: 10.1016/j.pain.2013.05.032.
    1. Attal N., Bouhassira D., Gautron M., Vaillant J.N., Mitry E., Lepere C., Rougier P., Guirimand F. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: A prospective quantified sensory assessment study. Pain. 2009;144:245–252. doi: 10.1016/j.pain.2009.03.024.
    1. Arkenau H.K. Capecitabine combined with oxaliplatin (CAPOX) in clinical practice: how significant is peripheral neuropathy? Ann Oncol. 2011;22:239–240. doi: 10.1093/annonc/mdq676.
    1. Tofthagen C., McAllister R.D., McMillan S.C. Peripheral neuropathy in patients with colorectal cancer receiving oxaliplatin. Clin. J. Oncol. Nurs. 2011;15:182–188. doi: 10.1188/11.CJON.182-188.
    1. Park S.B., Lin C.S., Krishnan A.V., Goldstein D., Friedlander M.L., Kiernan M.C. Long-term neuropathy after oxaliplatin treatment: Challenging the dictum of reversibility. Oncologist. 2011;16:708–716. doi: 10.1634/theoncologist.2010-0248.
    1. Beijers A.J.M., Mols F., Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support. Care Cancer. 2014;22:1999–2007. doi: 10.1007/s00520-014-2242-z.
    1. Briani C., Argyriou A.A., Izquierdo C., Velasco R., Campagnolo M., Alberti P., Frigeni B., Cacciavillani M., Bergamo F., Cortinovis D., et al. Long-term course of oxaliplatin-induced polyneuropathy: A prospective 2-year follow-up study. J. Peripher. Nerv. Syst. 2014;19:299–306. doi: 10.1111/jns.12097.
    1. Velasco R., Bruna J., Briani C., Argyriou A.A., Cavaletti G., Alberti P., Cacciavillani M., Frigeni B., Lonardi S., Cortinovis D., et al. Early predictors of oxaliplatin-induced cumulativeneuropathy in colorectal cancer patients. J. Neurol. Neurosurg. Psychiatry. 2014;85:392–398. doi: 10.1136/jnnp-2013-305334.
    1. Alejandro L.M., Behrendt C.E., Chen K., Openshaw H., Shibata S. Predicting acute and persistent neuropathy associated with oxaliplatin. Am. J. Clin. Oncol. 2013;36:331–337. doi: 10.1097/COC.0b013e318246b50d.
    1. Pulvers J.N., Marx G. Factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy: A systematic review. Asia Pac. J. Clin. Oncol. 2017;13:345–355. doi: 10.1111/ajco.12694.
    1. Palugulla S., Thakkar D.N., Kayal S., Narayan S.K., Dkhar S.A. Association of Voltage-Gated Sodium Channel Genetic Polymorphisms with Oxaliplatin-Induced Chronic Peripheral Neuropathy in South Indian Cancer Patients. Asian Pac. J. Cancer Prev. 2017;18:3157–3165.
    1. De Gramont A., Figer A., Seymour M., Homerin M., Hmissi A., Cassidy J., Cortes-Funes H., Boni C., Cervantes A., Freyer G., et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 2000;18:2938–2947. doi: 10.1200/JCO.2000.18.16.2938.
    1. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025.
    1. Tesniere A., Schlemmer F., Boige V., Kepp O., Martins I., Ghiringhelli F., Aymeric L., Michaud M., Apetoh L., Barault L., et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–491. doi: 10.1038/onc.2009.356.
    1. Canta A., Pozzi E., Carozzi V.A. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN) Toxics. 2015;3:198–223. doi: 10.3390/toxics3020198.
    1. Ray B., Gupta B., Mehrotra R. Binding of Platinum Derivative, Oxaliplatin to Deoxyribonucleic Acid: Structural Insight into Antitumor Action. J. Biomol. Struct. Dyn. 2018 doi: 10.1080/07391102.2018.1531059.
    1. Riddell I.A. Cisplatin and Oxaliplatin: Our Current Understanding of Their Actions. Met. Ions Life Sci. 2018 doi: 10.1515/9783110470734-007.
    1. McKeage M.J., Hsu T., Screnci D., Haddad G., Baguley B.C. Nucleolar damage correlates with neurotoxicity induced by different platinum drugs. Br. J. Cancer. 2001;85:1219–1225. doi: 10.1054/bjoc.2001.2024.
    1. Pereira A.F., de Oliveira F.F.B., de Freitas Alves B.W., de Menezes K.L.S., de Mesquita A.K.V., Lisboa M.R.P., de Sousa K.K.O., Vale M.L. Neurotoxic effect of oxaliplatin: Comparison with its oxalate-free analogue cis-[PtII(1R,2R-DACH)(3-acetoxy-1,1-cyclobutanedicarboxylato)] (LLC-1402) in mice. Toxicol. Appl. Pharmacol. 2018;340:77–84. doi: 10.1016/j.taap.2018.01.001.
    1. Kober K.M., Olshen A., Conley Y.P., Schumacher M., Topp K., Smoot B., Mazor M., Chesney M., Hammer M., Paul S.M., et al. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain. 2018;14:1744806918816462. doi: 10.1177/1744806918816462.
    1. Jaggi A.S., Singh N. Mechanisms in cancer chemotherapeutic drugs-induced peripheral neuropathy. Toxicology. 2012;291:1–9. doi: 10.1016/j.tox.2011.10.019.
    1. Viatchenko-Karpinski V., Ling J., Gu J.G. Down-regulation of Kv4.3 channels and a-type K+ currents in V2 trigeminal ganglion neurons of rats following oxaliplatin treatment. Mol. Pain. 2018;14:1–11. doi: 10.1177/1744806917750995.
    1. Fujita S., Hirota T., Sakiyama R., Baba M., Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J. Neurochem. 2019;148:373–385. doi: 10.1111/jnc.14607.
    1. Podratz J.L., Knight A.M., Ta L.E., Staff N.P., Gass J.M., Genelin K., Schlattau A., Lathroum L., Windebank A.J. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol. Dis. 2011;41:661–668. doi: 10.1016/j.nbd.2010.11.017.
    1. Yang Y., Luo L., Cai X., Fang Y., Wang J., Chen G., Yang J., Zhou Q., Sun X., Cheng X., et al. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function. Free Radic. Biol. Med. 2018;120:13–24. doi: 10.1016/j.freeradbiomed.2018.03.007.
    1. McQuade R.M., Stojanovska V., Bornstein J.C., Nurgali K. PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol. Res. 2018;137:104–113. doi: 10.1016/j.phrs.2018.09.031.
    1. Joseph E.K., Chen X., Bogen O., Levine J.D. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J. Pain. 2008;9:463–472. doi: 10.1016/j.jpain.2008.01.335.
    1. Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005;12:1161–1208. doi: 10.2174/0929867053764635.
    1. Zheng H., Xiao W.H., Bennett G.J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 2011;232:154–161. doi: 10.1016/j.expneurol.2011.08.016.
    1. Di Cesare Mannelli L., Zanardelli M., Failli P., Ghelardini C. Oxaliplatin-induced neuropathy: Oxidative stress as pathological mechanism. Protective effect of silibinin. J. Pain. 2012;13:276–284. doi: 10.1016/j.jpain.2011.11.009.
    1. Imai S., Koyanagi M., Azimi Z., Nakazato Y., Matsumoto M., Ogihara T., Yonezawa A., Omura T., Nakagawa S., Wakatsuki S., et al. Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci. Rep. 2017;7:5947. doi: 10.1038/s41598-017-05784-1.
    1. Di Cesare Mannelli L., Zanardelli M., Failli P., Ghelardini C. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radic Biol Med. 2013:143–150. doi: 10.1016/j.freeradbiomed.2013.03.019.
    1. Waseem M., Kaushik P., Tabassum H., Parvez S. Role of Mitochondrial Mechanism in Chemotherapy-Induced Peripheral Neuropathy. Curr. Drug Metab. 2018;19:47–54. doi: 10.2174/1389200219666171207121313.
    1. Sharawy N., Rashed L., Youakim M.F. Evaluation of multi neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp. Toxicol. Pathol. 2015;67:315–322. doi: 10.1016/j.etp.2015.02.003.
    1. Pan L., Song K., Hu F., Sun W., Lee I. Nitric oxide induces apoptosis associated with TRPV1 channel-mediated Ca(2+) entryvia S-nitrosylation in osteoblasts. Eur. J. Pharmacol. 2013;715:280–285. doi: 10.1016/j.ejphar.2013.05.009.
    1. Jamieson S.M., Liu J., Connor B., McKeage M.J. Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother. Pharmacol. 2005;56:391–399. doi: 10.1007/s00280-004-0953-4.
    1. Apostolidis L., Schwarz D., Xia A., Weiler M., Heckel A., Godel T., Heiland S., Schlemmer H.P., Jäger D., Bendszus M., et al. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy. PLoS ONE. 2017;12:e0183845. doi: 10.1371/journal.pone.0183845.
    1. Carozzi V.A., Canta A., Chiorazzi A. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci. Lett. 2015;596:90–107. doi: 10.1016/j.neulet.2014.10.014.
    1. Wang J.T., Medress Z.A., Barres B.A. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell Biol. 2012;196:7–18. doi: 10.1083/jcb.201108111.
    1. Sakurai M., Egashira N., Kawashiri T., Yano T., Ikesue H., Oishi R. Oxaliplatin-induced neuropathy in the rat: Involvement of oxalate in cold hyperalgesia but not mechanical allodynia. Pain. 2009;147:165–174. doi: 10.1016/j.pain.2009.09.003.
    1. Scuteri A., Galimberti A., Maggioni D., Ravasi M., Pasini S., Nicolini G., Bossi M., Miloso M., Cavaletti G., Tredici G. Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology. 2009;30:312–319. doi: 10.1016/j.neuro.2009.01.003.
    1. Hoeijmaker J.G.J., Faber C.G., Merkies I.S.J., Waxman S.G. Painful peripheral neuropathy and sodium channel mutations. Neurosci. Lett. 2015;596:51–59. doi: 10.1016/j.neulet.2014.12.056.
    1. Sittl R., Lampert A., Huth T., Schuy E.T., Link A.S., Fleckenstein J., Alzheimer C., Grafe P., Carr R.W. Anticancer drug oxaliplatin induces acute cooling aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc. Natl. Acad. Sci. USA. 2012;109:6704–6709. doi: 10.1073/pnas.1118058109.
    1. Lessans S., Lassiter C.B., Carozzi V., Heindel P., Semperboni S., Oggioni N., Chiorazzi A., Thompson C., Wagner M., Holden J., et al. Global transcriptomic profile of dorsal root ganglion and physiological correlates of cisplatin-induced peripheral neuropathy. Nurs Res. 2019;68:145–155. doi: 10.1097/NNR.0000000000000338.
    1. Deuis J.R., Lim Y.L., de Sousa S.R., Lewis R.J., Alewood P.F., Cabot P.J., Vetter I. Analgesic effects of clinically used compounds in novel mousemodels of polyneuropathy induced by oxaliplatin and cisplatin. Neuro Oncol. 2014;16:1324–1332. doi: 10.1093/neuonc/nou048.
    1. Adelsberger H.S., Quasthoff S., Grosskreutz J., Lepier A., Eckel F., Lersch C. The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 2000;406:1–25. doi: 10.1016/S0014-2999(00)00667-1.
    1. Ghelardini C., Desaphy J.F., Muraglia M., Corbo F., Matucci R., Dipalma A., Bertucci C., Pistolozzi M., Nesi M., Norcini M., et al. Effects of a new potent analog of tocainide on hNaV1.7 sodium channels and in vivo neuropathic pain models. Neuroscience. 2010;169:863–873. doi: 10.1016/j.neuroscience.2010.05.019.
    1. Lolignier S., Bonnet C., Gaudioso C., Noël J., Ruel J., Amalem M., Ferrier J., Rodat-Despoix L., Bouvier V., Aissouni Y., et al. The NaV1.9 channel is a key determinant of cold pain sensation and cold allodynia. Cell Rep. 2015;11:1067–1078. doi: 10.1016/j.celrep.2015.04.027.
    1. Heide R., Bostock H., Ventzel L., Grafe P., Bergmans J., Fuglsang-Frederiksen A., Finnerup N.B., Tankisi H. Axonal excitability changes and acute symptoms of oxaliplatin treatment: In vivo evidence for slowed sodium channel inactivation. Clin. Neurophysiol. 2018;129:694–706. doi: 10.1016/j.clinph.2017.11.015.
    1. Argyriou A.A., Cavaletti G., Antonacopoulou A., Genazzani A.A., Briani C., Bruna J., Terrazzino S., Velasco R., Alberti P., Campagnolo M., et al. Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: Results from a prospective multicenter study. Cancer. 2013;119:3570–3577. doi: 10.1002/cncr.28234.
    1. Descoeur J., Pereira V., Pizzoccaro A., Francois A., Ling B., Maffre V., Couette B., Busserolles J., Courteix C., Noel J., et al. Oxaliplatin-induced cold hypersensitivity is due to remodeling of ion channel expression in nociceptors. EMBO Mol. Med. 2011;3:266–278. doi: 10.1002/emmm.201100134.
    1. Poupon L., Lamoine S., Pereira V., Barriere D.A., Lolignier S., Giraudet F., Aissouni Y., Meleine M., Prival L., Richard D., et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology. 2018;140:43–61. doi: 10.1016/j.neuropharm.2018.07.026.
    1. Thibault K., Calvino B., Dubacq S., Roualle-de-Rouville M., Sordoillet V., Rivals I., Pezet S. Cortical effect of oxaliplatin associated with sustained neuropathic pain: Exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex. Pain. 2012;153:1636–1647. doi: 10.1016/j.pain.2012.04.016.
    1. Chukyo A., Chiba T., Kambe T., Yamamoto K., Kawakami K., Taguchi K., Abe K. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity. Neuropeptides. 2018;67:95–101. doi: 10.1016/j.npep.2017.12.002.
    1. Ta L.E., Bieber A.J., Carlton S.M., Loprinzi C.L., Low P.A., Windebank A.J. Transient receptor potential vanilloid 1 is essential forcisplatin-induced heat hyperalgesia in mice. Mol. Pain. 2010;6:15. doi: 10.1186/1744-8069-6-15.
    1. Yamamoto K., Chiba N., Chiba T., Kambe T., Abe K., Kawakami K., Utsunomiya I., Taguchi K. Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration. Mol. Pain. 2015;11:69. doi: 10.1186/s12990-015-0072-8.
    1. Zhao M., Isami K., Nakamura S., Shirakawa H., Nakagawa T., Kaneko S. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol. Pain. 2012;8:55. doi: 10.1186/1744-8069-8-55.
    1. Nassini R., Gees M., Harrison S., De Siena G., Materazzi S., Moretto N., Failli P., Preti D., Marchetti N., Cavazzini A., et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain. 2011;152:1621–1631. doi: 10.1016/j.pain.2011.02.051.
    1. Nakagawa T., Kaneko S. Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy. Biol. Pharm. Bull. 2017;40:947–953. doi: 10.1248/bpb.b17-00243.
    1. Miyake T., Nakamura M., Meng Z., Hamano S., Inoue K., Numata T., Takahashi N., Nagayasu K., Shirakawa H., Mori Y., et al. Distinct Mechanism of Cysteine Oxidation-Dependent Activation and Cold Sensitization of Human Transient Receptor Potential Ankyrin 1 Channel by High and Low Oxaliplatin. Front. Physiol. 2017;8:878. doi: 10.3389/fphys.2017.00878.
    1. Riva B., Dionisi M., Potenzieri A., Chiorazzi A., Cordero-Sanchez C., Rigolio R., Carozzi V.A., Lim D., Cavaletti G., Marmiroli P., et al. Oxaliplatin induces pH acidification in dorsal root ganglia neurons. Sci. Rep. 2018;8:15084. doi: 10.1038/s41598-018-33508-6.
    1. Kawashiri T., Egashira N., Kurobe K., Tsutsumi K., Yamashita Y., Ushio S., Yano T., Oishi R. L Type Ca2+ channel blockers prevent oxaliplatin-induced cold hyperalgesia and TRPM8 overexpression in rats. Mol. Pain. 2012;8:7. doi: 10.1186/1744-8069-8-7.
    1. Chen K., Zhang Z.F., Liao M.F., Yao W.L., Wang J., Wang X.R. Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord. J. Neurol. Sci. 2015;352:62–67. doi: 10.1016/j.jns.2015.03.029.
    1. Yoon S.Y., Robinson C.R., Zhang H., Dougherty P.M. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J. Pain. 2013;14:205–214. doi: 10.1016/j.jpain.2012.11.002.
    1. Di Cesare Mannelli L., Pacini A., Bonaccini L., Zanardelli M., Mello T., Ghelardini C. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J. Pain. 2013;14:1585–1600. doi: 10.1016/j.jpain.2013.08.002.
    1. Di Cesare Mannelli L., Pacini A., Micheli L., Tani A., Zanardelli M., Ghelardini C. Glial role in oxaliplatin induced neuropathic pain. Exp. Neurol. 2014;261:22–33. doi: 10.1016/j.expneurol.2014.06.016.
    1. Robinson C.R., Zhang H., Dougherty P.M. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience. 2014;274:308–317. doi: 10.1016/j.neuroscience.2014.05.051.
    1. Wahlman C., Doyle T.M., Little J.W., Luongo L., Janes K., Chen Z., Esposito E., Tosh D.K., Cuzzocrea S., Jacobson K.A., et al. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain. 2018;159:1025–1034. doi: 10.1097/j.pain.0000000000001177.
    1. Makker P.G., Duffy S.S., Lees J.G., Perera C.J., Tonkin R.S., Butovsky O., Park S.B., Goldstein D., Moalem-Taylor G. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS ONE. 2017;12:e0170814. doi: 10.1371/journal.pone.0170814.
    1. Hu L.Y., Zhou Y., Cui W.Q., Hu X.M., Du L.X., Mi W.L., Chu Y.X., Wu G.C., Wang Y.Q., Mao-Ying Q.L. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain Behav. Immun. 2018;68:132–145. doi: 10.1016/j.bbi.2017.10.011.
    1. Andoh T., Uta D., Kato M., Toume K., Komatsu K., Kuraishi Y. prophylactic administration of aucubin inhibits paclitaxel-induced mechanical allodynia via the inhibition of endoplasmic reticulum stress in peripheral Schwann Cells. Biol Pharm Bull. 2017;40:473–478. doi: 10.1248/bpb.b16-00899.
    1. Lees J.G., Makker P.G.S., Tonkin R.S., Abdulla M., Park S.B., Goldstein D., Moalem-Taylor G. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur. J. Cancer. 2017;73:22–29. doi: 10.1016/j.ejca.2016.12.006.
    1. Warwick R.A., Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain. 2013;17:571–580. doi: 10.1002/j.1532-2149.2012.00219.x.
    1. Wang X.M., Lehky T.J., Brell J.M., Dorsey S.G. Discover in cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine. 2012;59:3–9. doi: 10.1016/j.cyto.2012.03.027.
    1. Janes K., Wahlman C., Little J.W., Doyle T., Tosh D.K., Jacobson K.A., Salvemini D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model ofoxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 2015;44:91–99. doi: 10.1016/j.bbi.2014.08.010.
    1. Li C., Deng T., Shang Z., Wang D., Xiao Y. Blocking TRPA1 and TNF-α Signal Improves Bortezomib-Induced Neuropathic Pain. Cell. Physiol. Biochem. 2018;51:2098–2110. doi: 10.1159/000495828.
    1. Park H.J., Stokes J.A., Corr M., Yaksh T.L. Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother. Pharmacol. 2014;73:25–34. doi: 10.1007/s00280-013-2304-9.
    1. Jin X., Gereau R.W.T. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensoryneurons by tumor necrosis factor-alpha. J. Neurosci. 2006;26:246–255. doi: 10.1523/JNEUROSCI.3858-05.2006.
    1. Xu D., Hui Zhao H., Gao H., Zhao H., Liu D., Li J. Participation of pro-inflammatorycytokines in neuropathic pain evoked bychemotherapeutic oxaliplatin via centralGABAergic pathway. Mol. Pain. 2018;14:1–10. doi: 10.1177/1744806918783535.
    1. White F.A., Miller R.J. Insights into the regulation of chemokine receptors by molecularsignaling pathways: Functional roles in neuropathic pain. Brain Behav. Immun. 2010;24:859–865. doi: 10.1016/j.bbi.2010.03.007.
    1. Wang Y.S., Li Y.Y., Cui W., Li L.B., Zhang Z.C., Tian B.P., Zhang G.S. Melatonin attenuates pain hypersensitivity and decreases astrocyte-mediated spinal neuroinflammation ina rat model of oxaliplatin-induced pain. Inflammation. 2017;40:2052–2061. doi: 10.1007/s10753-017-0645-y.
    1. Illias A.M., Gist A.C., Zhang H., Kosturakis A., Dougherty P.M. Chemokine CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to oxaliplatin-induced mechanical hypersensitivity. Pain. 2018;159:1308–1316. doi: 10.1097/j.pain.0000000000001212.
    1. Sun J.H., Yang B., Donnelly D.F., Ma C., La Motte R.H. MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J. Neurophysiol. 2006;96:2189–2199. doi: 10.1152/jn.00222.2006.
    1. Li Y.Y., Li H., Liu Z.L., Li Q., Qiu H.W., Zeng L.J., Yang W., Zhang X.Z., Li Z.Y. Activation of STAT3-mediated CXCL12 up-regulation in the dorsal root ganglion contributes to oxaliplatin-induced chronic pain. Mol. Pain. 2017;13 doi: 10.1177/1744806917747425.
    1. Huang Z.Z., Li D., Ou-Yang H.D., Liu C.C., Liu X.G., Ma C., Wei J.Y., Liu Y., Xin W.J. Cerebrospinal fluid oxaliplatin contributes to the acute pain induced by systemicadministration of oxaliplatin. Anesthesiology. 2016;124:1109–1121. doi: 10.1097/ALN.0000000000001084.
    1. Wang J., Zhang X.S., Tao R., Zhang J., Liu L., Jiang Y.H., Ma S.H., Song L.X., Xia L.J. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol. Pain. 2017;13 doi: 10.1177/1744806917726256.
    1. Dietrich J., Prust M., Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience. 2015;309:224–232. doi: 10.1016/j.neuroscience.2015.06.016.
    1. Horky L.L., Gerbaudo V.H., Zaitsev A., Plesniak W., Hainer J., Govindarajulu U., Kikinis R., Dietrich J. Systemic chemotherapy decreases brain glucose metabolism. Ann. Clin. Transl. Neurol. 2014;1:788–798. doi: 10.1002/acn3.121.
    1. Janelsins M.C., Kohli S., Mohile S.G., Usuki K., Ahles T.A., Morrow G.R. An update on cancer- and chemotherapy related cognitive dysfunction: Current status. Semin. Oncol. 2011;38:431–438. doi: 10.1053/j.seminoncol.2011.03.014.
    1. Nudelman K.N., McDonald B.C., Wang Y., Smith D.J., West J.D., O’Neill D.P., Zanville N.R., Champion V.L., Schneider B.P., Saykin A.J. Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy. J. Clin. Oncol. 2016;34:677–683. doi: 10.1200/JCO.2015.62.1276.
    1. Jacobs S.S., Fox E., Dennie C., Morgan L.B., McCully C.L., Balis F.M. Plasma and cerebrospinal fluid pharmacokinetics of intravenous oxaliplatin, cisplatin, and carboplatin in nonhuman primates. Clin. Cancer Res. 2005;11:1669–1674. doi: 10.1158/1078-0432.CCR-04-1807.
    1. Rochfort K.D., Collins L.E., Murphy R.P., Cummins P.M. Downregulation of blood–brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PLoS ONE. 2014;9:e101815. doi: 10.1371/journal.pone.0101815.
    1. Argaw A.T., Zhang Y., Snyder B.J., Zhao M.L., Kopp N., Lee S.C., Raine C.S., Brosnan C.F., John G.R. IL-1beta regulates blood–brain barrier permeability via reactivation of the hypoxia angiogenesis program. J. Immunol. 2006;177:5574–5584. doi: 10.4049/jimmunol.177.8.5574.
    1. Branca J.J.V., Maresca M., Morucci G., Becatti M., Paternostro F., Gulisano M., Ghelardini C., Salvemini D., Di Cesare Mannelli L., Pacini A. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget. 2018;9:23426–23438. doi: 10.18632/oncotarget.25193.
    1. Sanna M.D., Ghelardini C., Galeotti N. Altered Expression of Cytoskeletal and Axonal Proteins in Oxaliplatin-Induced Neuropathy. Pharmacology. 2016;97:146–150. doi: 10.1159/000443898.
    1. Richardson P., Hideshima T., Anderson K. Thalidomide in multiple myeloma. Biomed. Pharmacother. 2002;56:115–128. doi: 10.1016/S0753-3322(02)00168-3.
    1. Fernyhough P., Smith D.R., Schapansky J., Van Der Ploeg R., Gardiner N.J., Tweed C.W., Kontos A., Freeman L., Purves-Tyson T.D., Glazner G.W. Activation of nuclearfactor-(kappa) B via endogenous tumor necrosis factor (alpha) regulates survival of axotomized adult sensory neurons. J. Neurosci. 2005;25:1682–1690. doi: 10.1523/JNEUROSCI.3127-04.2005.
    1. Mohty B., El-Cheikh J., Yakoub-Agha I., Moreau P., Harousseauj L., Mohty M. Peripheral neuropathy and new treatments for multiple myeloma: Background and practical recommendations. Haematologica. 2010;95:311–319. doi: 10.3324/haematol.2009.012674.
    1. Morawska M., Grzasko N., Kostyra M., Wojciechowicz J., Hus M. Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol. Oncol. 2015;33:113–119. doi: 10.1002/hon.2149.
    1. Wechalekar A.D., Chen C.I., Sutton D., Reece D., Voralia M., Stewart A.K. Intermediate dose thalidomide (200 mg daily) has comparable efficacy and less toxicity than higher doses in relapsed multiple myeloma. Leuk. Lymphoma. 2003;44:1147–1149. doi: 10.1080/1042819031000067918.
    1. Prince H.M., Schenkel B., Mileshkin L. An analysis of clinical trials assessing the efficacy and safety of single-agent thalidomide in patients with relapsed or refractory multiple myeloma. Leuk. Lymphoma. 2007;48:46–55. doi: 10.1080/10428190601001904.
    1. Bramuzzo M., Stocco G., Montico M., Arrigo S., Calvi A., Lanteri P., Costa S., Pellegrino S., Magazzù G., Barp J., et al. Risk Factors and Outcomes of Thalidomide-induced Peripheral Neuropathy in a Pediatric Inflammatory Bowel Disease Cohort. Inflamm. Bowel Dis. 2017;23:1810–1816. doi: 10.1097/MIB.0000000000001195.
    1. García-Sanz R., Corchete L.A., Alcoceba M., Chillon M.C., Jiménez C., Prieto I., García-Álvarez M., Puig N., Rapado I., Barrio S., et al. Prediction of peripheral neuropathy in multiple myeloma patients receiving bortezomib and thalidomide: A genetic study based on a single nucleotide polymorphism array. Hematol. Oncol. 2017;35:746–751. doi: 10.1002/hon.2337.
    1. Johnson D.C., Corthals S.L., Walker B.A., Ross F.M., Gregory W.M., Dickens N.J., Lokhorst H.M., Goldschmidt H., Davies F.E., Durie B.G., et al. Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J. Clin. Oncol. 2011;29:797–804. doi: 10.1200/JCO.2010.28.0792.
    1. Badros A., Goloubeva O., Dalal J.S., Can I., Thompson J., Rapoport A.P., Heyman M., Akpek G., Fenton R.G. Neurotoxicity of bortezomib therapy in multiple myeloma: A single-center experience and review of the literature. Cancer. 2007;110:1042–1049. doi: 10.1002/cncr.22921.
    1. Tamilarasan K.P., Kolluru G.K., Rajaram M., Indhumathy M., Saranya R., Chatterjee S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol. 2006;7:17. doi: 10.1186/1471-2121-7-17.
    1. Jongen J.L.M., Broijl A., Sonneveld P. Chemotherapy-induced peripheral neuropathies in hematological malignancies. J. Neurooncol. 2015;121:229–237. doi: 10.1007/s11060-014-1632-x.
    1. Keifer A., Guttridge D.C., Ashburner B.P., Baldwin A.S. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J. Biol. Chem. 2001;276:22382–22387. doi: 10.1074/jbc.M100938200.
    1. Nascimento F.P., Macedo-Júnior S.J., Borges F.R., Cremonese R.P., da Silva M.D., Luiz-Cerutti M., Martins D.F., Rodrigues A.L., Santos A.R. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience. 2015;303:51–58. doi: 10.1016/j.neuroscience.2015.06.044.
    1. Wani T.H., Chakrabarty A., Shibata N., Yamazaki H., Guengerich F.P., Chowdhury G. The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage. Chem. Res. Toxicol. 2017;30:1622–1628. doi: 10.1021/acs.chemrestox.7b00127.
    1. Yared J.A., Tkaczuk K.H. Update on taxane development: New analogs and new formulations. Drug Des. Dev. Ther. 2012;6:371–384.
    1. Scripture C.D., Figg W.D., Sparreboom A. Peripheral neuropathy induced by paclitaxel: Recent insights and future perspectives. Curr. Neuropharmacol. 2006;4:165–172. doi: 10.2174/157015906776359568.
    1. De Iuliis F., Taglieri L., Salerno G., Lanza R., Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit. Rev. Oncol./Hematol. 2015;96:34–45. doi: 10.1016/j.critrevonc.2015.04.011.
    1. Eckhoff A.S., Knoop M.B., Jensen M., Ewertz M. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors. Eur. J. Cancer. 2015;51:292–300. doi: 10.1016/j.ejca.2014.11.024.
    1. Peng L., Bu Z., Ye X., Zhou Y., Zhao Q. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: A meta-analysis. Eur. J. Cancer Care. 2017;26 doi: 10.1111/ecc.12407.
    1. Gornstein E.L., Schwarz T.L. Neurotoxic Mechanisms of Paclitaxel Are Local to the Distal Axon and Independent of Transport Defects. Exp. Neurol. 2017;288:153–166. doi: 10.1016/j.expneurol.2016.11.015.
    1. Bober B.G., Shah S.B. Paclitaxel Alters Sensory Nerve Biomechanical Properties. J. Biomech. 2015;48:3559–3567. doi: 10.1016/j.jbiomech.2015.07.020.
    1. LaPointe N.E., Morfini G., Brady S.T., Feinstein S.C., Wilson L., Jordan M.A. Effects of Eribulin, Vincristine, Paclitaxel and Ixabepilone on Fast Axonal Transport and Kinesin-1 Driven Microtubule Gliding: Implications for Chemotherapy-Induced Peripheral Neuropathy. Neurotoxicology. 2013;37:231–239. doi: 10.1016/j.neuro.2013.05.008.
    1. Shemesh O.A., Spira M.E. Paclitaxel Induces Axonal Microtubules Polar Reconfiguration and Impaired Organelle Transport: Implications for the Pathogenesis of Paclitaxel-Induced Polyneuropathy. Acta Neuropathol. 2010;119:235–248. doi: 10.1007/s00401-009-0586-0.
    1. Wozniak K.M., Vornov J.J., Wum Y., Liu Y., Carozzi V.A., Rodriguez-Menendez V., Ballarini E., Alberti P., Pozzi E., Semperboni S., et al. Peripheral neuropathy induced by microtubule-targeted chemotherapies: insights into acute injury and long-term recovery. Cancer Res. 2018;78:817–829. doi: 10.1158/0008-5472.CAN-17-1467.
    1. Bobylev I., Joshi A.R., Barham M., Ritter C., Neiss W.F., Höke A., Lehmann H.C. Paclitaxel Inhibits MRNA Transport in Axons. Neurobiol. Dis. 2015;82:321–331. doi: 10.1016/j.nbd.2015.07.006.
    1. Doyle T., Chen Z., Muscoli C., Bryant L., Esposito E., Cuzzocrea S., Dagostino C., Ryerse J., Rausaria S., Kamadulski A., et al. Targeting the Overproduction of Peroxynitrite for the Prevention and Reversal of Paclitaxel-Induced Neuropathic Pain. J. Neurosci. 2012;32:6149–6160. doi: 10.1523/JNEUROSCI.6343-11.2012.
    1. Duggett N.A., Griffiths L.A., McKenna O.E., de Santis V., Yongsanguanchai N., Mokori E.B., Flatters S.J.L. Oxidative Stress in the Development, Maintenance and Resolution of Paclitaxel-Induced Painful Neuropathy. Neuroscience. 2016;333:13–26. doi: 10.1016/j.neuroscience.2016.06.050.
    1. Xiao W.H., Zheng H., Zheng F.Y., Nuydens R., Meert T.F., Bennett G.J. Mitochondrial Abnormality in Sensory, but Not Motor, Axons in Paclitaxel-Evoked Painful Peripheral Neuropathy in the Rat. Neuroscience. 2011;199:461–469. doi: 10.1016/j.neuroscience.2011.10.010.
    1. Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.-Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial Reactive Oxygen Species Promote Production of Proinflammatory Cytokines and Are Elevated in TNFR1-Associated Periodic Syndrome (TRAPS) J. Exp. Med. 2011;208:519–533. doi: 10.1084/jem.20102049.
    1. Griffiths L.A., Flatters S.J.L. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy. J. Pain. 2015;16:981–994. doi: 10.1016/j.jpain.2015.06.008.
    1. Duggett N.A., Griffiths L.A., Flatters S.J.L. Paclitaxel-Induced Painful Neuropathy Is Associated with Changes in Mitochondrial Bioenergetics, Glycolysis, and an Energy Deficit in Dorsal Root Ganglia Neurons. Pain. 2017;158:1499–1508. doi: 10.1097/j.pain.0000000000000939.
    1. Flatters S.J.L., Bennett G.J. Studies of Peripheral Sensory Nerves in Paclitaxel-Induced Painful Peripheral Neuropathy: Evidence for Mitochondrial Dysfunction. Pain. 2006;122:245–257. doi: 10.1016/j.pain.2006.01.037.
    1. Xiao W.H., Bennett G.J. Effects of Mitochondrial Poisons on the Neuropathic Pain Produced by the Chemotherapeutic Agents, Paclitaxel and Oxaliplatin. Pain. 2012;153:704–709. doi: 10.1016/j.pain.2011.12.011.
    1. Sahenk Z., Barohn R., New P., Mendell J.R. Taxol Neuropathy. Electrodiagnostic and Sural Nerve Biopsy Findings. Arch. Neurol. 1994;51:726–729. doi: 10.1001/archneur.1994.00540190110024.
    1. Boehmerle W., Huehnchen P., Peruzzaro S., Balkaya M., Endres M. Electrophysiological, Behavioral and Histological Characterization of Paclitaxel, Cisplatin, Vincristine and Bortezomib-Induced Neuropathy in C57Bl/6 Mice. Sci. Rep. 2015;4:6370. doi: 10.1038/srep06370.
    1. Siau C., Xiao W., Bennett G.J. Paclitaxel- and Vincristine-Evoked Painful Peripheral Neuropathies: Loss of Epidermal Innervation and Activation of Langerhans Cells. Exp. Neurol. 2006;201:507–514. doi: 10.1016/j.expneurol.2006.05.007.
    1. Gornstein E., Schwarz T.L. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology. 2014;76:175–183. doi: 10.1016/j.neuropharm.2013.08.016.
    1. Boyette-Davis J., Xin W., Zhang H., Dougherty P.M. Intraepidermal Nerve Fiber Loss Corresponds to the Development of Taxol-Induced Hyperalgesia and Can Be Prevented by Treatment with Minocycline. Pain. 2011;152:308–313. doi: 10.1016/j.pain.2010.10.030.
    1. Ferrari G., Nallasamy N., Downs H., Dana R., Oaklander A.L. Corneal Innervation as a Window to Peripheral Neuropathies. Exp. Eye Res. 2013;113:148–150. doi: 10.1016/j.exer.2013.05.016.
    1. Zhang H., Boyette-Davis J.A., Kosturakis A.K., Li Y., Yoon S.-Y., Walters E.T., Dougherty P.M. Induction of Monocyte Chemoattractant Protein-1 (MCP-1) and Its Receptor CCR2 in Primary Sensory Neurons Contributes to Paclitaxel-Induced Peripheral Neuropathy. J. Pain. 2013;14:1031–1044. doi: 10.1016/j.jpain.2013.03.012.
    1. Siau C., Bennett G.J. Dysregulation of Cellular Calcium Homeostasis in Chemotherapy-Evoked Painful Peripheral Neuropathy. Anesth. Analg. 2006;102:1485–1490. doi: 10.1213/01.ane.0000204318.35194.ed.
    1. Yilmaz E., Watkins S.C., Gold M.S. Paclitaxel-Induced Increase in Mitochondrial Volume Mediates Dysregulation of Intracellular Ca2+ in Putative Nociceptive Glabrous Skin Neurons from the Rat. Cell Calcium. 2017;62:16–28. doi: 10.1016/j.ceca.2017.01.005.
    1. Kidd J.F., Pilkington M.F., Schell M.J., Fogarty K.E., Skepper J.N., Taylor C.W., Thorn P. Paclitaxel Affects Cytosolic Calcium Signals by Opening the Mitochondrial Permeability Transition Pore. J. Biol. Chem. 2002;277:6504–6510. doi: 10.1074/jbc.M106802200.
    1. Mironov S.L., Ivannikov M.V., Johansson M. [Ca 2+ ] i Signaling between Mitochondria and Endoplasmic Reticulum in Neurons Is Regulated by Microtubules. J. Biol. Chem. 2005;280:715–721. doi: 10.1074/jbc.M409819200.
    1. Boehmerle W., Splittgerber U., Lazarus M.B., McKenzie K.M., Johnston D.G., Austin D.J., Ehrlich B.E. Paclitaxel Induces Calcium Oscillations via an Inositol 1,4,5-Trisphosphate Receptor and Neuronal Calcium Sensor 1-Dependent Mechanism. Proc. Natl. Acad. Sci. USA. 2006;103:18356–18361. doi: 10.1073/pnas.0607240103.
    1. Li Y., Tatsui C.E., Rhines L.D., North R.Y., Harrison D.S., Cassidy R.M., Johansson C.A., Kosturakis A.K., Edwards D.D., Zhang H., et al. Dorsal Root Ganglion Neurons Become Hyperexcitable and Increase Expression of Voltage-Gated T-Type Calcium Channels (Cav3.2) in Paclitaxel-Induced Peripheral Neuropathy. Pain. 2017;158:417–429. doi: 10.1097/j.pain.0000000000000774.
    1. Okubo K., Takahashi T., Sekiguchi F., Kanaoka D., Matsunami M., Ohkubo T., Yamazaki J., Fukushima N., Yoshida S., Kawabata A. Inhibition of T-Type Calcium Channels and Hydrogen Sulfide-Forming Enzyme Reverses Paclitaxel-Evoked Neuropathic Hyperalgesia in Rats. Neuroscience. 2011;188:148–156. doi: 10.1016/j.neuroscience.2011.05.004.
    1. Zhang H., Dougherty P.M. Enhanced Excitability of Primary Sensory Neurons and Altered Gene Expression of Neuronal Ion Channels in Dorsal Root Ganglion in Paclitaxel-Induced Peripheral Neuropathy. Anesthesiology. 2014;120:1463–1475. doi: 10.1097/ALN.0000000000000176.
    1. Hara T., Chiba T., Abe K., Makabe A., Ikeno S., Kawakami K., Utsunomiya I., Hama T., Taguchi K. Effect of Paclitaxel on Transient Receptor Potential Vanilloid 1 in Rat Dorsal Root Ganglion. Pain. 2013;154:882–889. doi: 10.1016/j.pain.2013.02.023.
    1. Materazzi S., Fusi C., Benemei S., Pedretti P., Patacchini R., Nilius B., Prenen J., Creminon C., Geppetti P., Nassini R. TRPA1 and TRPV4 Mediate Paclitaxel-Induced Peripheral Neuropathy in Mice via a Glutathione-Sensitive Mechanism. Pflugers Arch. 2012;463:561–569. doi: 10.1007/s00424-011-1071-x.
    1. Chen Y., Yang C., Wang Z.J. Proteinase-Activated Receptor 2 Sensitizes Transient Receptor Potential Vanilloid 1, Transient Receptor Potential Vanilloid 4, and Transient Receptor Potential Ankyrin 1 in Paclitaxel-Induced Neuropathic Pain. Neuroscience. 2011;193:440–451. doi: 10.1016/j.neuroscience.2011.06.085.
    1. Li Y., North R.Y., Rhines L.D., Tatsui C.E., Rao G., Edwards D.D., Cassidy R.M., Harrison D.S., Johansson C.A., Zhang H., et al. DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. J. Neurosci. 2018;38:1124–1136. doi: 10.1523/JNEUROSCI.0899-17.2017.
    1. Aromolaran K.A., Goldstein P.A. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol Pain. 2017;13:1744806917714693. doi: 10.1177/1744806917714693.
    1. Zaks-Zilberman M., Zaks T.Z., Vogel S.N. Induction of proinflammatory and chemokine genes by lipopolysaccharide and paclitaxel (TaxolTM) in murine and human breast cancer cell lines. Cytokine. 2001;15:156–165. doi: 10.1006/cyto.2001.0935.
    1. Krukowski K., Eijkelkamp N., Laumet G., Hack C.E., Li Y., Dougherty P.M., Heijnen C.J., Kavelaars A. CD8+ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. J. Neurosci. 2016;36:11074–11083. doi: 10.1523/JNEUROSCI.3708-15.2016.
    1. Zhang H., Yoon S.-Y., Zhang H., Dougherty P.M. Evidence That Spinal Astrocytes but Not Microglia Contribute to the Pathogenesis of Paclitaxel-Induced Painful Neuropathy. J. Pain. 2012;13:293–303. doi: 10.1016/j.jpain.2011.12.002.
    1. Ruiz-Medina J., Baulies A., Bura S.A., Valverde O. Paclitaxel-Induced Neuropathic Pain Is Age Dependent and Devolves on Glial Response. Eur. J. Pain. 2013;17:75–85. doi: 10.1002/j.1532-2149.2012.00172.x.
    1. Zhang H., Li Y., de Carvalho-Barbosa M., Kavelaars A., Heijnen C.J., Albrecht P.J., Dougherty P.M. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J. Pain. 2016;17:775–786. doi: 10.1016/j.jpain.2016.02.011.
    1. Liu C.C., Lu N., Cui Y., Yang T., Zhao Z.-Q., Xin W.-J., Liu X.-G. Prevention of Paclitaxel-Induced Allodynia by Minocycline: Effect on Loss of Peripheral Nerve Fibers and Infiltration of Macrophages in Rats. Mol. Pain. 2010;6:76. doi: 10.1186/1744-8069-6-76.
    1. Li Y., Zhang H., Zhang H., Kosturakis A.K., Jawad A.B., Dougherty P.M. Toll-Like Receptor 4 Signaling Contributes to Paclitaxel-Induced Peripheral Neuropathy. J. Pain. 2014;15:712–725. doi: 10.1016/j.jpain.2014.04.001.
    1. Lopus M., Smiyun G., Miller H., Oroudjev E., Wilson L., Jordan M.A. Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother. Pharmacol. 2015;76:1013–1024. doi: 10.1007/s00280-015-2863-z.
    1. Heigener D.F., von Pawel J., Eschbach C., Brune A., Schmittel A., Schmelter T., Reck M., Fischer J.R. Prospective, multicenter, randomized, independent-group, open-label phase II study to investigate the efficacy and safety of three regimens with two doses of sagopilone as second-line therapy in patients with stage IIIB or IV non-small-cell lung cancer. Lung Cancer. 2013;80:319–325. doi: 10.1016/j.lungcan.2013.02.007.
    1. Vahdat L.T., Thomas E.S., Roché H.H., Hortobagyi G.N., Sparano J.A., Yelle L., Fornier M.N., Martín M., Bunnell C.A., Mukhopadhyay P., et al. Ixabepilone-associated peripheral neuropathy: Data from across the phase II and III clinical trials. Support. Care Cancer. 2012;20:2661–2668. doi: 10.1007/s00520-012-1384-0.
    1. Ebenezer G.J., Carlson K., Donovan D., Cobham M., Chuang E., Moore A., Cigler T., Ward M., Lane M.E., Ramnarain A., et al. Ixabepilone-Induced Mitochondria and Sensory Axon Loss in Breast Cancer Patients. Ann. Clin. Transl. Neurol. 2014;1:639–649. doi: 10.1002/acn3.90.
    1. Raffa R.B., Pergolizzi J.V., Jr. Cancer Chemotherapy–Induced Neuropathic Pain. The Underlying Peripheral Neuropathy. In: Raffa R.B., Langford R., Pergolizzi J.V. Jr., Porecca F., Tallarida R.J., editors. Chemotherapy—Induced Neuropathic Pain. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2013. pp. 113–135.
    1. Boyette–Davis J.A., Hou S., Abdi S., Dougherty P.M. An updated understanding of the mechanisms involved in chemotherapy-induced neuropathy. Pain Manag. 2018;8:363–375. doi: 10.2217/pmt-2018-0020.
    1. Topp K.S., Tanner K.D., Levine J.D. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine induced painful peripheral neuropathy in the rat. J. Comp. Neurol. 2000;424:563–576. doi: 10.1002/1096-9861(20000904)424:4<563::AID-CNE1>;2-U.
    1. Casey E.B., Jellife A.M., Le Quesne P.M., Millett Y.L. Vincristine neuropathy. Clinical and electrophysiological observations. Brain. 1973;96:69–86. doi: 10.1093/brain/96.1.69.
    1. Sandler S.G., Tobin W., Henderson E.S. Vincristine-induced neuropathy. A clinical study of fifty leukemic patients. Neurology. 1969;19:367–374. doi: 10.1212/WNL.19.4.367.
    1. Graf W.D., Chance P.F., Lensch M.W., Eng L.J., Lipe H.P., Bird T.D. Severe vincristine neuropathy in Charcot-Marie-Tooth disease type 1A. Cancer. 1996;77:1356–1362. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1356::AID-CNCR20>;2-#.
    1. Nakamura T., Hashiguchi A., Suzuki S., Uozumi K., Tokunaga S., Takashima H. Vincristine exacerbates asymptomatic Charcot–Marie–Tooth disease with a novel EGR2 mutation. Neurogenetics. 2012;13:77–82. doi: 10.1007/s10048-012-0313-1.
    1. Diouf B., Crews K.R., Lew G., Pei D., Cheng C., Bao J., Zheng J.J., Yang W., Fan Y., Wheeler H.E., et al. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA. 2015;313:815–823. doi: 10.1001/jama.2015.0894.
    1. Barzegar–Fallah A., Alimoradi H., Mehrzadi S., Barzegar–Fallah N., Zendedel A., Abbasi A., Dehpour A.R. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity. Neurotoxicology. 2014;41:1–8. doi: 10.1016/j.neuro.2013.12.002.
    1. Geisler S., Doan R.A., Strickland A., Huang X., Milbrandt J., Di Antonio A. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain. 2016;139:3092–3108. doi: 10.1093/brain/aww251.
    1. Saifee T.A., Elliott K.J., Rabin N., Yong K.L., D’Sa S., Brandner S., Lunn M.P., Blake J., Reilly M.M. Bortezomib-induced inflammatory neuropathy. J. Peripher. Nerv. Syst. 2010;15:366–368. doi: 10.1111/j.1529-8027.2010.00287.x.
    1. Thawani S.P., Tanji K., De Sousa E.A., Weimer L.H., Brannagan T.H., 3rd Bortezomib-associated demyelinating neuropathy—Clinical and pathologic features. J. Clin. Neuromuscul. Dis. 2015;16:202–209. doi: 10.1097/CND.0000000000000077.
    1. Peng L., Ye X., Zhou Y., Zhang J., Zhao Q. Meta-analysis of incidence and risk of peripheral neuropathy associated with intravenous bortezomib. Support. Care Cancer. 2015;23:2813–2824. doi: 10.1007/s00520-015-2648-2.
    1. Farquhar-Smith P. Chemotherapy-induced neuropathic pain. Curr. Opin. Support. Palliat. Care. 2011;5:1–7. doi: 10.1097/SPC.0b013e328342f9cc.
    1. Hu B., Zhou Q., Wu T., Zhuang L., Yi L., Cao J., Yang X., Wang J. Efficacy and safety of subcutaneous versus intravenous bortezomib in multiple myeloma: A meta-analysis. Int. J. Clin. Pharmacol. Ther. 2017;55:329–338. doi: 10.5414/CP202714.
    1. Liu H., Xu R., Huang H. Peripheral neuropathy outcomes and efficacy of subcutaneous bortezomib when combined with thalidomide and dexamethasone in the treatment of multiple myeloma. Exp. Ther. Med. 2016;12:3041–3046. doi: 10.3892/etm.2016.3738.
    1. Salvemini D., Doyle T., Kress M., Nicol G. Therapeutic targeting of the ceramide-to-sphingosine 1-phosphate pathway in pain. Trends Pharmacol. Sci. 2013;34:110–118. doi: 10.1016/j.tips.2012.12.001.
    1. Dawkins J.L., Hulme D.J., Brahmbhatt S.B., Auer-Grumbach M., Nicholson G.A. Mutations in SPT LC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 2001;27:309–312. doi: 10.1038/85879.
    1. Stockstill K., Doyle T.M., Yan X., Chen Z., Janes K., Little J.W., Braden K., Lauro F., Giancotti L.A., Harada C.M., et al. Dysregulation of sphingolipid Metabolism contributes to bortezomib-inducedneuropathicpain. J. Exp. Med. 2018;215:1301–1313. doi: 10.1084/jem.20170584.
    1. Emery E.C., Wood J.N. Gaining on Pain. N. Engl. J. Med. 2018;379:485–487. doi: 10.1056/NEJMcibr1803720.
    1. Broyl A., Corthals S.L., Jongen J.L., van der Holt B., Kuiper R., de Knegt Y., van Duin M., el Jarari L., Bertsch U., Lokhorst H.M., et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: A prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010;11:1057–1065. doi: 10.1016/S1470-2045(10)70206-0.
    1. Magrangeas F., Kuiper R., Avet-Loiseau H., Gouraud W., Guerin-Charbonnel C., Ferrer L., Aussem A., Elghazel H., Suhard J., Sakissian H., et al. A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in European patients with multiple myeloma. Clin. Cancer Res. 2016;22:4350–4355. doi: 10.1158/1078-0432.CCR-15-3163.
    1. Ale A., Bruna J., Calls A., Karamita M., Haralambous S., Probert L., NaVarro X., Udina E. Inhibition of the neuronal NFkappaB pathway attenuates bortezomib induced neuropathy in a mouse model. Neurotoxicology. 2016;55:58–64. doi: 10.1016/j.neuro.2016.05.004.
    1. Wang J., Udd K.A., Vidisheva A., Swift R.A., Spektor T.M., Bravin E., Ibrahim E., Treisman J., Masri M., Berenson J.R. Low serum vitamin D occurs commonly among multiple myeloma patients treated with bortezomib and/or thalidomide and is associated with severe neuropathy. Support. Care Cancer. 2016;24:3105–3110. doi: 10.1007/s00520-016-3126-1.
    1. Zheng H., Xiao W.H., Bennett G.J. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp. Neurol. 2012;238:225–234. doi: 10.1016/j.expneurol.2012.08.023.
    1. Hou S., Huh B., Kim H.K., Kim K.H., Abdi S. Treatment of chemotherapy-induced peripheral neuropathy: systematic review and recommendations. Pain Physician. 2018;21:571–592.
    1. Chua K.C., Kroetz D.L. Genetic Advances Uncover Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Clin. Pharmacol. Ther. 2017;101:450–452. doi: 10.1002/cpt.590.
    1. Oveissi V., Ram M., Bahramsoltani R., Ebrahimi F., Rahimi R., Naseri R., Belwal T., Devkota H.P., Abbasabadi Z., Farzaei M.H. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: Therapeutic targets and clinical perspective. Daru. 2019 doi: 10.1007/s40199-019-00255-6.
    1. Wu B.Y., Liu C.T., Su Y.L., Chen S.Y., Chen Y.H., Tsai M.Y. A review of complementary therapies with medicinal plants for chemotherapy-induced peripheral neuropathy. Complement. Ther. Med. 2019;42:226–232. doi: 10.1016/j.ctim.2018.11.022.
    1. Masocha W., Thomas A. Indomethacin plus minocycline coadministration relieves chemotherapy and antiretroviral drug-induced neuropathic pain in a cannabinoid receptors-dependent manner. J. Pharmacol. Sci. 2019 doi: 10.1016/j.jphs.2019.02.007.

Source: PubMed

3
Abonner