Drug-Induced Peripheral Neuropathy: A Narrative Review

Mark R Jones, Ivan Urits, John Wolf, Devin Corrigan, Luc Colburn, Emily Peterson, Amber Williamson, Omar Viswanath, Mark R Jones, Ivan Urits, John Wolf, Devin Corrigan, Luc Colburn, Emily Peterson, Amber Williamson, Omar Viswanath

Abstract

Background: Peripheral neuropathy is a painful condition deriving from many and varied etiologies. Certain medications have been implicated in the iatrogenic development of Drug Induced Peripheral Neuropathy (DIPN) and include chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, anticonvulsants, among others. This review synthesizes current clinical concepts regarding the mechanism, common inciting medications, and treatment options for drug-induced peripheral neuropathy.

Methods: The authors undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question and inclusion/exclusion criteria. The most relevant and up to date research was included.

Results: Drug-induced peripheral neuropathy is a common and painful condition caused by many different and frequently prescribed medications. Most often, DIPN is seen in chemotherapeutic agents, antimicrobials, cardiovascular drugs, psychotropic, and anticonvulsant drugs. Certain drugs exhibit more consistent neuropathic side effects, such as the chemotherapeutic compounds, but others are more commonly prescribed by a larger proportion of providers, such as the statins. DIPN is more likely to occur in patients with concomitant risk factors such as preexisting neuropathy, diabetes, and associated genetically predisposing diseases. DIPN is often difficult to treat, however medications including duloxetine, and gabapentin are shown to reduce neuropathic pain. Advanced techniques of neuromodulation offer promise though further randomized and controlled studies are needed to confirm efficacy.

Conclusion: Awareness of the drugs covered in this review and their potential for adverse neuropathic effect is important for providers caring for patients who report new onset symptoms of pain, paresthesia, or weakness. Prevention of DIPN is especially important because treatment often proves challenging. While many pharmacologic therapies have demonstrated analgesic potential in the pain caused by DIPN, many patients remain refractive to treatment. More studies are needed to elucidate the effectiveness of interventional, neuromodulating therapies.

Keywords: Drug induced peripheral neuropathy; chemotherapy; gabapentinoids; pain; paresthesia; statins; weakness..

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

References

    1. Vilholm O.J., Christensen A.A., Zedan A.H., Itani M. Drug‐induced peripheral neuropathy. Basic Clin. Pharmacol. Toxicol. 2014;115(2):185–192. doi: 10.1111/bcpt.12261.
    1. Green S., Holton A. Drug-induced peripheral neuropathy. Adverse Drug React. Bull. 2016;300(1):1159–1162. doi: 10.1097/FAD.0000000000000020.
    1. Ma J., Kavelaars A., Dougherty P.M., Heijnen C.J. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer Wiley-Blackwell. 2018;124(11):2289–2298.
    1. Cashman C.R., Höke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci. Lett. 2015;596:33–50. doi: 10.1016/j.neulet.2015.01.048.
    1. McDonald E.S., Randon K.R., Knight A., Windebank A.J. Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: A potential mechanism for neurotoxicity. Neurobiol. Dis. 2005;18(2):305–313. doi: 10.1016/j.nbd.2004.09.013.
    1. Kidd J.F., Pilkington M.F., Schell M.J., et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J. Biol. Chem. 2002;277(8):6504–6510. doi: 10.1074/jbc.M106802200.
    1. Apostolski S., McAlarney T., Hays A.P., Latov N. Complement dependent cytotoxicity of sensory ganglion neurons mediated by the gp120 glycoprotein of HIV-1. Immunol. Invest. 1994;23(1):47–52. doi: 10.3109/08820139409063432.
    1. Meregalli C., Chiorazzi A., Carozzi V.A., et al. Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle. 2014;13(4):612–621. doi: 10.4161/cc.27476.
    1. Adelsberger H., Quasthoff S., Grosskreutz J., Lepier A., Eckel F., Lersch C. The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 2000;406(1):25–32. doi: 10.1016/S0014-2999(00)00667-1.
    1. Nagle S, Strelec LE, Loren AW, et al. 2017.
    1. Bao T., Basal C., Seluzicki C., Li S.Q., Seidman A.D., Mao J.J. Long-term chemotherapy-induced peripheral neuropathy among breast cancer survivors: Prevalence, risk factors, and fall risk. Breast Cancer Res. Treat. 2016;159(2):327–333. doi: 10.1007/s10549-016-3939-0.
    1. Hur J, Guo AY, Loh WY, Feldman EL, Bai JPF. Integrated systems pharmacology analysis of clinical drug-induced peripheral neuropathy. 2014.
    1. Wu C., Tcherny-Lessenot S., Dai W., et al. Assessing the risk for peripheral neuropathy in patients treated with dronedarone compared with that in other antiarrhythmics. Clin. Ther. 2018;40(3):450–455. doi: 10.1016/j.clinthera.2018.01.015.
    1. Niimi N, Yako H, Tsukamoto M, et al. Involvement of oxidative stress and impaired lysosomal degradation in amiodarone-induced schwannopathy. 2016.
    1. West B., Williams C.M., Jilbert E., James A.M., Haines T.P. Statin use and peripheral sensory perception: a pilot study. Somatosens. Mot. Res. 2014;31(2):57–61. doi: 10.3109/08990220.2013.840281.
    1. Svendsen T de K., Nørregaard H.P., García R.L.A., et al. Statins and polyneuropathy revisited: Case-control study in Denmark, 1999-2013. Br J Clin Pharmacol Wiley-Blackwell. 2017;83(9):2087–2095.
    1. Gaist D., Jeppesen U., Andersen M., García Rodríguez L.A., Hallas J., Sindrup S.H. Statins and risk of polyneuropathy: A case-control study. Neurology. 2002;58(9):1333–1337. doi: 10.1212/WNL.58.9.1333.
    1. Bhalla S., Singh N., Jaggi A.S. Statins: Do they aggravate or ameliorate neuropathic pain? J. Pain. 2014;15(11):1069–1080.
    1. Gürkov R. Amiodarone: A newly discovered association with bilateral vestibulopathy. Front. Neurol. 2018;6(9):119. doi: 10.3389/fneur.2018.00119.
    1. Brewer J.R., Morrison G., Dolan M.E., Fleming G.F. Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecol. Oncol. 2016;140(1):176–183. doi: 10.1016/j.ygyno.2015.11.011.
    1. Mora E, Smith EML, Donohoe C, Hertz DL. Vincristine-induced peripheral neuropathy in pediatric cancer patients. 2016.
    1. Staff N.P., Grisold A., Grisold W., Windebank A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017;81(6):772–781. doi: 10.1002/ana.24951.
    1. Fujita S., Hirota T., Sakiyama R., Baba M., Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J. Neurochem. 2019;148(3):373–385.
    1. Delforge M., Bladé J., Dimopoulos M.A., et al. Treatment-related peripheral neuropathy in multiple myeloma: The challenge continues. Lancet Oncol. 2010;11(11):1086–1095. doi: 10.1016/S1470-2045(10)70068-1.
    1. Luo J., Gagne J.J., Landon J., Avorn J., Kesselheim A.S. Comparative effectiveness and safety of thalidomide and lenalidomide in patients with multiple myeloma in the United States of America: A population-based cohort study. Eur. J. Cancer. 2017;70:22–33. doi: 10.1016/j.ejca.2016.10.018.
    1. Ludwig H., Delforge M., Facon T., et al. Prevention and management of adverse events of novel agents in multiple myeloma: A consensus of the European myeloma network. Leukemia. 2018;32(7):1542–1560. doi: 10.1038/s41375-018-0040-1.
    1. Yin Y., Qi X., Qiao Y., et al. 2018
    1. Vahdat LT, Thomas ES, Roché HH, et al. 2012.
    1. Kim P.G., Bridgham K., Chen E.C., et al. Incident adverse events following therapy for acute promyelocytic leukemia. Leuk. Res. Rep. 2018;9:79–83. doi: 10.1016/j.lrr.2018.05.001.
    1. Kühn M., Sammartin K., Nabergoj M., Vianello F. Severe acute axonal neuropathy following treatment with arsenic trioxide for acute promyelocytic leukemia: A case report. Mediterr. J. Hematol. Infect. Dis. 2016;8(1):e2016023. doi: 10.4084/mjhid.2016.023.
    1. Tsubaki M., Takeda T., Matsumoto M., et al. Tolerability of prolonged linezolid therapy in bone and joint infection: protective effect of rifampicin on the occurrence of anaemia? J Antimicrob Chemother Oxford University Press. 2018;65(10):2224–2230.
    1. van der Watt J.J., Harrison T.B., Benatar M., Heckmann J.M. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: A systematic review. Int. J. Tuberc. Lung Dis. 2011;15(6):722–728. doi: 10.5588/ijtld.10.0284.
    1. Biehl J.P., Nimitz H.J. Studies on the use of high dose of isoniazid. I. Toxicity studies. Am. Rev. Tuberc. 1954;70(3):430–441.
    1. Yoon Y.H., Jung K.H., Sadun A.A., Shin H-C., Koh J-Y. Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol Academic Press. 2000;162(2):107–4.
    1. Koul PA. 2015.
    1. Schecter G.F., Scott C., True L., Raftery A., Flood J., Mase S. Linezolid in the treatment of multidrug‐resistant tuberculosis. Clin. Infect. Dis. 2010;50(1):49–55. doi: 10.1086/648675.
    1. Legout L., Valette M., Dezeque H., et al. Tolerability of prolonged linezolid therapy in bone and joint infection: protective effect of rifampicin on the occurrence of anaemia? J. Antimicrob. Chemother. 2010;65(10):2224–2230.
    1. Duffy L.F., Daum F., Fisher S.E., et al. Peripheral neuropathy in Crohn’s disease patients treated with metronidazole. Gastroenterology. 1985;88(3):681–684. doi: 10.1016/0016-5085(85)90137-4.
    1. Hobson-Webb L.D., Roach E.S., Donofrio P.D. Metronidazole: Newly recognized cause of autonomic neuropathy. J. Child Neurol. 2006;21(5):429–431. doi: 10.1177/08830738060210051201.
    1. Shin I-S.J., Baer A.N., Kwon H.J., Papadopoulos E.J., Siegel J.N. Guillain-Barré and Miller Fisher syndromes occurring with tumor necrosis factor α antagonist therapy. Arthritis Rheum. 2006;54(5):1429–1434. doi: 10.1002/art.21814.
    1. Marzo ME, Tintoré M, Fabregues O, Montalbán X, Codina A. 1998.
    1. Kato-Motozaki Y., Komai K., Takahashi K., et al. Polyethylene glycol interferon α-2b-induced immune-mediated polyradiculoneuropathy. Intern. Med. 2009;48(7):569–572.
    1. Créange A., Lefaucheur J.P. Focal neuropathy associated with cutaneous necrosis at the site of interferon-beta injection for multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2000;68(3):395.
    1. Bharadwaj A., Haroon N. Peripheral neuropathy in patients on leflunomide. Rheumatology. 2004;43(7):934–4. doi: 10.1093/rheumatology/keh191.
    1. Martin K., Bentaberry F., Dumoulin C., et al. Neuropathy associated with leflunomide: A case series. Ann. Rheum. Dis. 2005;64(4):649–650. doi: 10.1136/ard.2004.027193.
    1. Carulli M.T., Davies U.M. Peripheral neuropathy: An unwanted effect of leflunomide? Rheumatology. 2002;41(8):952–953. doi: 10.1093/rheumatology/41.8.952.
    1. Pratt R.W., Weimer L.H. Medication and toxin-induced peripheral neuropathy. Semin. Neurol. 2005;25(2):204–216. doi: 10.1055/s-2005-871329.
    1. Lichtenstein K.A., Armon C., Baron A., et al. Modification of the incidence of drug-associated symmetrical peripheral neuropathy by host and disease factors in the HIV outpatient study cohort. Clin. Infect. Dis. 2005
    1. Abers M.S., Shandera W.X., Kass J.S. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs. 2014;28(2):131–145. doi: 10.1007/s40263-013-0132-4.
    1. Chaudhry V., Chaudhry M., Crawford T.O., Simmons-O’Brien E., Griffin J.W. Toxic neuropathy in patients with pre-existing neuropathy. Neurology. 2003;60(2):337–340. doi: 10.1212/01.WNL.0000043691.53710.53.
    1. Weimer L.H. Medication-induced peripheral neuropathy. Curr. Neurol. Neurosci. Rep. 2003;3(1):86–92. doi: 10.1007/s11910-003-0043-8.
    1. Moreno S., Hernández B., Dronda F. Didanosine enteric-coated capsule: Current role in patients with HIV-1 infection. Drugs. 2007;67(10):1441–1462. doi: 10.2165/00003495-200767100-00006.
    1. Ferrari L.F., Levine J.D. Alcohol consumption enhances antiretroviral painful peripheral neuropathy by mitochondrial mechanisms. Eur. J. Neurosci. 2010;32(5):811–818. doi: 10.1111/j.1460-9568.2010.07355.x.
    1. Toth C., Breithaupt K., Ge S., et al. Levodopa, methylmalonic acid, and neuropathy in idiopathic Parkinson disease. Ann. Neurol. 2010;68(1):28–36. doi: 10.1002/ana.22021.
    1. Cossu G., Ceravolo R., Zibetti M., et al. Levodopa and neuropathy risk in patients with Parkinson disease: Effect of COMT inhibition. Park Relat Disord. 2016;27:81–84.
    1. Merola A., Romagnolo A., Zibetti M., Bernardini A., Cocito D., Lopiano L. Peripheral neuropathy associated with levodopa-carbidopa intestinal infusion: A long-term prospective assessment. Eur. J. Neurol. 2016;23(3):501–509. doi: 10.1111/ene.12846.
    1. Ceravolo R., Cossu G., Bandettini di Poggio M., et al. Neuropathy and levodopa in Parkinson’s disease: Evidence from a multicenter study. Mov. Disord. 2013;28(10):1391–1397. doi: 10.1002/mds.25585.
    1. Gorgone G., Currò M., Ferlazzo N., et al. Coenzyme Q10, hyperhomocysteinemia and MTHFR C677T polymorphism in levodopa-treated Parkinson’s disease patients. Neuromolecular Med. 2012;14(1):84–90. doi: 10.1007/s12017-012-8174-1.
    1. Boussaud V., Daudet N., Billaud E.M., et al. Neuromuscular Painful Disorders: A rare side effect of voriconazole in lung transplant patients under tacrolimus. J. Heart Lung Transplant. 2008;27(2):229–232.
    1. Baxter C.G., Marshall A., Roberts M., Felton T.W., Denning D.W. Peripheral neuropathy in patients on long-term triazole antifungal therapy. J. Antimicrob. Chemother. 2011;66(9):2136–2139. doi: 10.1093/jac/dkr233.
    1. Tsiodras S., Zafiropoulou R., Kanta E., Demponeras C., Karandreas N., Manesis E.K. Painful peripheral neuropathy associated with voriconazole use. Arch. Neurol. 2005;62(1):144–146. doi: 10.1001/archneur.62.1.144.
    1. Chen H., Chan D.C. Critical dependence of neurons on mitochondrial dynamics. Curr. Opin. Cell Biol. 2006;18(4):453–459. doi: 10.1016/j.ceb.2006.06.004.
    1. Theuretzbacher U., Ihle F., Derendorf H. Pharmacokinetic/ pharmacodynamic profile of voriconazole. Clin. Pharmacokinet. 2006;45(7):649–663. doi: 10.2165/00003088-200645070-00002.
    1. Cartwright M.E., Petruska J., Arezzo J., et al. Phospholipidosis in neurons caused by posaconazole, without evidence for functional neurologic effects. Toxicol. Pathol. 2009;37(7):902–910. doi: 10.1177/0192623309348521.
    1. Aksoy F., Akdogan E., Aydin K., et al. Voriconazole-induced neuropathy. Chemotherapy. 2008;54(3):224–227. doi: 10.1159/000140466.
    1. Dworkin R.H., Corbin A.E., Young J.P., Jr, et al. Pregabalin for the treatment of postherpetic neuralgia: A randomized, placebo-controlled trial. Neurology. 2003;60(8):1274–1283. doi: 10.1212/01.WNL.0000055433.55136.55.
    1. Nishikawa N, Nomoto M. 2017.
    1. Dworkin R.H., O’Connor A.B., Kent J., et al. International association for the study of pain neuropathic pain special interest group. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154(11):2249–2261. doi: 10.1016/j.pain.2013.06.004.
    1. Head K.A. Peripheral neuropathy: Pathogenic mechanisms and alternative therapies. Altern. Med. Rev. 2006;11(4):294–329.
    1. Fonseca V.A., Lavery L.A., Thethi T.K., et al. Metanx in type 2 diabetes with peripheral neuropathy: A randomized trial. Am. J. Med. 2013;126(2):141–149. doi: 10.1016/j.amjmed.2012.06.022.

Source: PubMed

3
Abonner