Neuroprotective potential of erythropoietin in neonates; design of a randomized trial

Sandra E Juul, Dennis E Mayock, Bryan A Comstock, Patrick J Heagerty, Sandra E Juul, Dennis E Mayock, Bryan A Comstock, Patrick J Heagerty

Abstract

Background: In 2013, nearly four million babies were born in the U.S., among whom 447,875 were born preterm. Approximately 30,000 of these infants were born before 28 weeks of gestation. These infants, termed Extremely Low Gestational Age Neonates (ELGANs), experience high morbidity and mortality despite modern therapies: approximately 20 % of ELGANs admitted to an NICU die before discharge, 20 % of survivors have severe, and 20 % moderate neurodevelopmental impairment (NDI). New approaches are needed to improve neonatal outcomes. Recombinant erythropoietin (Epo) is a promising neuroprotective agent that is widely available, affordable, and has been used safely in neonates to stimulate erythropoiesis. There are extensive preclinical data to support its use as a neuroprotective intervention: Epo promotes normal brain maturation by increasing neurogenesis, angiogenesis, and by protecting oligodendrocytes. Epo also decreases acute brain injury following hypoxia ischemia by decreasing inflammation, oxidative and excitotoxic injury, resulting in decreased apoptosis. Despite the availability of both preclinical and safety data there has not been a definitive clinical evaluation of the benefit of Epo, and a large phase III trial is necessary to provide evidence to support potential changes in practice guidelines.

Findings: We first review the preclinical data motivating further clinical trials, and then describe in detail the design of the PENUT study (Preterm Epo Neuroprotection). PENUT is a phase III study evaluating the effect of neonatal Epo treatment on the combined outcome of death or severe NDI among ELGANS. 940 subjects will be randomized to determine: 1) whether Epo decreases the combined outcome of death or NDI at 22-26 months corrected age; 2) the safety of high dose Epo administration to ELGANs; 3) whether Epo treatment decreases serial measures of circulating inflammatory mediators, and improves biomarkers of brain injury; and 4) whether Epo treatment improves brain structure at 36 weeks postmenstrual age as measured by MRI.

Conclusions: Epo neuroprotection is an exciting new approach to preterm neuroprotection, and if efficacious, will provide a much-needed therapy for this group of vulnerable infants.

Keywords: Biomarkers; ELGANS; Neuroprotection; Prematurity.

Figures

Fig. 1
Fig. 1
Epo pharmacokinetics in neonatal rats compared to extremely low birth weight infants (ELBW). Epo concentration in mU/mL is shown on the Y axis, and time in hours on the X axis. Serum concentration in neonatal rats is shown following subcutaneous injection (s.c.) or intraperitoneal injection (i.p.) of 5000 U/kg/dose of Epo. This is compared to dosing in human ELBW infants with 500 U/kg/dose or 1000 U/kg/dose by intravenous injection (i.v.). The area under the curve (AUC) of 1000 U/kg/dose most closely approximates the neuroprotective concentrations noted in rats treated with 5000 U/kg/dose
Fig. 2
Fig. 2
PENUT Trial Overview. Significant events each subject will undergo when participating in the PENUT trial
Fig. 3
Fig. 3
PENUT Trial Blood Draws. The timing of all PENUT related blood draws is shown schematically

References

    1. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–56. doi: 10.1542/peds.2009-2959.
    1. Hintz SR, Kendrick DE, Stoll BJ, Vohr BR, Fanaroff AA, Donovan EF, et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics. 2005;115(3):696–703. doi: 10.1542/peds.2004-0569.
    1. Beauchamp MH, Thompson DK, Howard K, Doyle LW, Egan GF, Inder TE, et al. Preterm infant hippocampal volumes correlate with later working memory deficits. Brain. 2008;131(Pt 11):2986–94. doi: 10.1093/brain/awn227.
    1. Edgin JO, Inder TE, Anderson PJ, Hood KM, Clark CA, Woodward LJ. Executive functioning in preschool children born very preterm: relationship with early white matter pathology. J Int Neuropsychol Soc. 2008;14(1):90–101. doi: 10.1017/S1355617708080053.
    1. Gargus RA, Vohr BR, Tyson JE, High P, Higgins RD, Wrage LA, et al. Unimpaired outcomes for extremely low birth weight infants at 18 to 22 months. Pediatrics. 2009;124(1):112–21. doi: 10.1542/peds.2008-2742.
    1. Ancel PY, Goffinet F, Group E-W, Kuhn P, Langer B, Matis J, et al. Survival and Morbidity of Preterm Children Born at 22 Through 34 Weeks' Gestation in France in 2011: Results of the EPIPAGE-2 Cohort Study. JAMA Pediatr. 2015;169(3):230–8. doi: 10.1001/jamapediatrics.2014.3351.
    1. Ancel PY, Livinec F, Larroque B, Marret S, Arnaud C, Pierrat V, et al. Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities: the EPIPAGE cohort study. Pediatrics. 2006;117(3):828–35. doi: 10.1542/peds.2005-0091.
    1. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N. Autism spectrum disorders in extremely preterm children. J Pediatr. 2010;156(4):525–31. doi: 10.1016/j.jpeds.2009.10.041.
    1. Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparen P, Cnattingius S. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics. 2009;124(5):e817–25. doi: 10.1542/peds.2008-3582.
    1. Kuban KC, O'Shea TM, Allred EN, Tager-Flusberg H, Goldstein DJ, Leviton A. Positive screening on the Modified Checklist for Autism in Toddlers (M-CHAT) in extremely low gestational age newborns. J Pediatr. 2009;154(4):535–40. doi: 10.1016/j.jpeds.2008.10.011.
    1. Scott MN, Taylor HG, Fristad MA, Klein N, Espy KA, Minich N, et al. Behavior Disorders in Extremely Preterm/Extremely Low Birth Weight Children in Kindergarten. J Dev Behav Pediatr. 2012
    1. Petrou S, Abangma G, Johnson S, Wolke D, Marlow N. Costs and health utilities associated with extremely preterm birth: evidence from the EPICure study. Value Health. 2009;12(8):1124–34. doi: 10.1111/j.1524-4733.2009.00580.x.
    1. Petrou S, Johnson S, Wolke D, Marlow N. The association between neurodevelopmental disability and economic outcomes during mid-childhood. Child: care, health and development. 2012. doi:10.1111/j.1365-2214.2012.01368.x.
    1. Lodygensky GA, Vasung L, Sizonenko SV, Huppi PS. Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat. 2010;217(4):418–28. doi: 10.1111/j.1469-7580.2010.01280.x.
    1. Huppi PS. Growth and development of the brain and impact on cognitive outcomes. Nestle Nutr Workshop Ser Pediatr Program. 2010;65:137–49. doi: 10.1159/000281156.
    1. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–24. doi: 10.1016/S1474-4422(08)70294-1.
    1. Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol. 2011;70(4):525–9. doi: 10.1002/ana.22533.
    1. Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38(2 Suppl):724–30. doi: 10.1161/01.STR.0000254729.27386.05.
    1. Volpe JJ. Neurology of the Newborn. 4th ed. Philadelphia, Pennsylvania: W.B. Saunders; 2001. p. 435-437.
    1. Martin CR, Dammann O, Allred EN, Patel S, O'Shea TM, Kuban KC, et al. Neurodevelopment of extremely preterm infants who had necrotizing enterocolitis with or without late bacteremia. J Pediatr. 2010;157(5):751–6. doi: 10.1016/j.jpeds.2010.05.042.
    1. Leviton A, Fichorova R, Yamamoto Y, Allred EN, Dammann O, Hecht J, et al. Inflammation-related proteins in the blood of extremely low gestational age newborns. The contribution of inflammation to the appearance of developmental regulation. Cytokine. 2011;53(1):66–73. doi: 10.1016/j.cyto.2010.09.003.
    1. Ivacko JA, Sun R, Silverstein FS. Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res. 1996;39(1):39–47. doi: 10.1203/00006450-199601000-00006.
    1. Foster-Barber A, Dickens B, Ferriero DM. Human perinatal asphyxia: correlation of neonatal cytokines with MRI and outcome. Dev Neurosci. 2001;23(3):213–8. doi: 10.1159/000046146.
    1. Bartha AI, Foster-Barber A, Miller SP, Vigneron DB, Glidden DV, Barkovich AJ, et al. Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res. 2004;56(6):960–6. doi: 10.1203/.
    1. Juul S, Felderhoff-Mueser U. Epo and other hematopoietic factors. Semin Fetal Neonatal Med. 2007;12(4):250–8. doi: 10.1016/j.siny.2007.01.015.
    1. Kumral A, Gonenc S, Acikgoz O, Sonmez A, Genc K, Yilmaz O, et al. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats. Biol Neonate. 2005;87(1):15–8. doi: 10.1159/000080490.
    1. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732–7. doi: 10.1161/01.STR.0000132196.49028.a4.
    1. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38:2795–803. doi: 10.1161/STROKEAHA.107.483008.
    1. Shingo T, Sorokan ST, Shimazaki T, Weiss S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci. 2001;21(24):9733–43.
    1. Osredkar D, Sall JW, Bickler PE, Ferriero DM. Erythropoietin promotes hippocampal neurogenesis in in vitro models of neonatal stroke. Neurobiol Dis. 2010;38(2):259–65. doi: 10.1016/j.nbd.2010.01.015.
    1. Kellert BA, McPherson RJ, Juul SE. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res. 2007;61(4):451–5. doi: 10.1203/pdr.0b013e3180332cec.
    1. Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci. 2009;31(5):403–11. doi: 10.1159/000232558.
    1. Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci. 2007;29:321–30. doi: 10.1159/000105473.
    1. Demers EJ, McPherson RJ, Juul SE. Erythropoietin protects dopaminergic neurons and improves neurobehavioral outcomes in juvenile rats after neonatal hypoxia-ischemia. Pediatr Res. 2005;58(2):297–301. doi: 10.1203/01.PDR.0000169971.64558.5A.
    1. Iwai M, Stetler RA, Xing J, Hu X, Gao Y, Zhang W, et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010;41(5):1032–7. doi: 10.1161/STROKEAHA.109.570325.
    1. Reitmeir R, Kilic E, Kilic U, Bacigaluppi M, ElAli A, Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011;134(Pt 1):84–99. doi: 10.1093/brain/awq344.
    1. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. PNAS. 2002;99(14):9450–5. doi: 10.1073/pnas.142287899.
    1. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003;198(6):971–5. doi: 10.1084/jem.20021067.
    1. Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke. 2005;36(8):1672–8. doi: 10.1161/01.STR.0000173406.04891.8c.
    1. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. PNAS. 2001;98(7):4044–9. doi: 10.1073/pnas.051606598.
    1. Bian XX, Yuan XS, Qi CP. Effect of recombinant human erythropoietin on serum S100B protein and interleukin-6 levels after traumatic brain injury in the rat. Neurol Med Chir (Tokyo) 2010;50(5):361–6. doi: 10.2176/nmc.50.361.
    1. Juul SE, Beyer RP, Bammler TK, McPherson RJ, Wilkerson J, Farin FM. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus. Pediatr Res. 2009;65(5):485–92. doi: 10.1203/PDR.0b013e31819d90c8.
    1. Yatsiv I, Grigoriadis N, Simeonidou C, Stahel PF, Schmidt OI, Alexandrovitch AG, et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J. 2005;19(12):1701–3.
    1. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, et al. Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity. Neurobiol Dis. 2004;15(2):177–87. doi: 10.1016/j.nbd.2003.10.006.
    1. Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Fontana E, Gorio A, et al. Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury. Neuroscience. 2008;151(2):452–66. doi: 10.1016/j.neuroscience.2007.11.004.
    1. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, et al. MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia. Stroke. 2009;40(3):936–41. doi: 10.1161/STROKEAHA.108.527713.
    1. Zhang L, Chopp M, Zhang RL, Wang L, Zhang J, Wang Y, et al. Erythropoietin amplifies stroke-induced oligodendrogenesis in the rat. PLoS ONE. 2010;5(6) doi: 10.1371/journal.pone.0011016.
    1. Yamada M, Burke C, Colditz P, Johnson DW, Gobe GC. Erythropoietin protects against apoptosis and increases expression of non-neuronal cell markers in the hypoxia-injured developing brain. J Pathol. 2011
    1. Rees S, Hale N, De Matteo R, Cardamone L, Tolcos M, Loeliger M, et al. Erythropoietin is neuroprotective in a preterm ovine model of endotoxin-induced brain injury. J Neuropathol Exp Neurol. 2010;69(3):306–19. doi: 10.1097/NEN.0b013e3181d27138.
    1. Savino C, Pedotti R, Baggi F, Ubiali F, Gallo B, Nava S, et al. Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J Neuroimmunol. 2006;172(1–2):27–37. doi: 10.1016/j.jneuroim.2005.10.016.
    1. Leuchter RH, Gui L, Poncet A, Hagmann C, Lodygensky GA, Martin E, et al. Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. JAMA. 2014;312(8):817–24. doi: 10.1001/jama.2014.9645.
    1. Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res. 2002;44(4):391–403. doi: 10.1016/S0168-0102(02)00161-X.
    1. Genc K, Genc S, Baskin H, Semin I. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res. 2006;55(1):33–8.
    1. Mizuno K, Hida H, Masuda T, Nishino H, Togari H. Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model. Neonatology. 2008;94(4):255–66. doi: 10.1159/000151644.
    1. Buonocore G, Perrone S, Longini M, Paffetti P, Vezzosi P, Gatti MG, et al. Non protein bound iron as early predictive marker of neonatal brain damage. Brain. 2003;126(Pt 5):1224–30. doi: 10.1093/brain/awg116.
    1. Ozment CP, Turi JL. Iron overload following red blood cell transfusion and its impact on disease severity. Biochim Biophys Acta. 2009;1790(7):694–701. doi: 10.1016/j.bbagen.2008.09.010.
    1. Loeliger MM, Mackintosh A, De Matteo R, Harding R, Rees SM. Erythropoietin protects the developing retina in an ovine model of endotoxin-induced retinal injury. Invest Ophthalmol Vis Sci. 2011;52(5):2656–61. doi: 10.1167/iovs.10-6455.
    1. van der Kooij MA, Groenendaal F, Kavelaars A, Heijnen CJ, van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev. 2008;59(1):22–33. doi: 10.1016/j.brainresrev.2008.04.007.
    1. Traudt CM, McPherson RJ, Bauer LA, Richards TL, Burbacher TM, McAdams RM, et al. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci. 2013;35(6):491–503.
    1. Juul SE, McPherson RJ, Farrell FX, Jolliffe L, Ness DJ, Gleason CA. Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate. 2004;85(2):138–44. doi: 10.1159/000074970.
    1. Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, et al. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013;44(3):753–8. doi: 10.1161/STROKEAHA.111.000104.
    1. Weber A, Dzietko M, Berns M, Felderhoff-Mueser U, Heinemann U, Maier RF, et al. Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis. 2005;20(2):594–600. doi: 10.1016/j.nbd.2005.04.016.
    1. Juul SE, McPherson RJ, Bauer LA, Ledbetter KJ, Gleason CA, Mayock DE. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics. 2008;122(2):383–91. doi: 10.1542/peds.2007-2711.
    1. Widness JA, Veng-Pedersen P, Peters C, Pereira LM, Schmidt RL, Lowe LS. Erythropoietin pharmacokinetics in premature infants: developmental, nonlinearity, and treatment effects. J Appl Physiol. 1996;80(1):140–8.
    1. Fauchere JC, Koller BM, Tschopp A, Dame C, Ruegger C, Bucher HU, et al. Safety of Early High-Dose Recombinant Erythropoietin for Neuroprotection in Very Preterm Infants. J Pediatr. 2015;167(1):52–7. doi: 10.1016/j.jpeds.2015.02.052.
    1. O'Gorman RL, Bucher HU, Held U, Koller BM, Huppi PS, Hagmann CF, et al. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain. 2015;138(Pt 2):388–97. doi: 10.1093/brain/awu363.
    1. Ohls RK, Kamath-Rayne BD, Christensen RD, Wiedmeier SE, Rosenberg A, Fuller J, et al. Cognitive Outcomes of Preterm Infants Randomized to Darbepoetin, Erythropoietin, or Placebo. Pediatrics. 2014
    1. McAdams RM, McPherson RJ, Mayock DE, Juul SE. Outcomes of extremely low birth weight infants given early high-dose erythropoietin. J Perinatol. 2013;33(3):226–30. doi: 10.1038/jp.2012.78.
    1. Juul S. Erythropoietin in anemia of prematurity. J Matern Fetal Neona. 2012;25(Suppl 5):80–4. doi: 10.3109/14767058.2012.716987.
    1. Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2014;4
    1. Ohls RK, Christensen RD, Widness JA, Juul SE. Erythropoiesis Stimulating Agents Demonstrate Safety and Show Promise as Neuroprotective Agents in Neonates. J Pediatr. 2015
    1. Franz AR, Mihatsch WA, Sander S, Kron M, Pohlandt F. Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams. Pediatrics. 2000;106(4):700–6. doi: 10.1542/peds.106.4.700.
    1. Bednarek N, Svedin P, Garnotel R, Favrais G, Loron G, Schwendiman L, et al. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy. Pediatr Res. 2012;71(1):63–70. doi: 10.1038/pr.2011.3.
    1. O'Shea TM, Allred EN, Kuban KC, Dammann O, Paneth N, Fichorova R, et al. Elevated concentrations of inflammation-related proteins in postnatal blood predict severe developmental delay at 2 years of age in extremely preterm infants. The Journal of Pediatrics. 2012;160(3):395–401. doi: 10.1016/j.jpeds.2011.08.069.
    1. Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO) Neurosci Lett. 2007;425(3):177–82. doi: 10.1016/j.neulet.2007.08.022.
    1. Douglas-Escobar M, Yang C, Bennett J, Shuster J, Theriaque D, Leibovici A, et al. A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatric Research. 2010;68(6):531–6. doi: 10.1203/PDR.0b013e3181f85a03.
    1. Ehrenreich H, Kastner A, Weissenborn K, Streeter J, Sperling S, Wang KK, et al. Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients. Mol Med. 2011;17(11–12):1306–10.
    1. Ennen CS, Huisman TA, Savage WJ, Northington FJ, Jennings JM, Everett AD, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol. 2011;205(3):251 e1–7. doi: 10.1016/j.ajog.2011.06.025.
    1. Habas PA, Corbett-Detig JM, Kim K, Rousseau F, Glenn OA, Barkovich AJ et al., editors. Global and regional patterns of tissue volume growth in the normal fetal brain from in utero MRI. 16th Annual Meeting of the Organization for Human Brain Mapping; 2010; Barcelona, Spain.
    1. Rodriguez-Carranza CE, Mukherjee P, Vigneron D, Barkovich J, Studholme C. A framework for in vivo quantification of regional brain folding in premature neonates. Neuroimage. 2008;41(2):462–78. doi: 10.1016/j.neuroimage.2008.01.008.
    1. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013;34(11):2208–14. doi: 10.3174/ajnr.A3521.
    1. Moore T, Johnson S, Haider S, Hennessy E, Marlow N. The Bayley-III cognitive and language scales: how do scores relate to the Bayley II? Arch Dis Child. 2011;96(Suppl 1):A1–100.
    1. Msall ME. Measuring outcomes after extreme prematurity with the Bayley-III Scales of infant and toddler development: a cautionary tale from Australia. Arch Pediatr Adolesc Med. 2010;164(4):391–3. doi: 10.1001/archpediatrics.2010.25.
    1. Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW. Underestimation of developmental delay by the new Bayley-III Scale. Arch Pediatr Adolesc Med. 2010;164(4):352–6. doi: 10.1001/archpediatrics.2010.20.
    1. Johnson S, Wolke D, Hennessy E, Marlow N. Educational outcomes in extremely preterm children: neuropsychological correlates and predictors of attainment. Dev Neuropsychol. 2011;36(1):74–95. doi: 10.1080/87565641.2011.540541.
    1. Vermont Oxford Network ELBW Follow-up Report Birth Year 2008 All Centers [database on the Internet] Sept 2011. Accessed.
    1. Fisher L, Dixon DO, Herson J, Frankowski RK, Hearron MS, Peace KE, et al. Intention to treat in clinical trials. In: Peace KE, et al., editors. Statistical Issues in Drug Research and Development. New York: Marcel Dekker; 1991. pp. 331–50.
    1. Diggle PJ, Heagerty PJ, Liang KY, Zeger SL. Analysis of Longitudinal Data. Second Edition ed. Oxford University Press; 2002.
    1. Ohlsson A, Aher SM. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2006;3
    1. Fauchere JC, Dame C, Vonthein R, Koller B, Arri S, Wolf M, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics. 2008;122(2):375–82. doi: 10.1542/peds.2007-2591.
    1. Bierer R, Peceny MC, Hartenberger CH, Ohls RK. Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics. 2006;118(3):e635–40. doi: 10.1542/peds.2005-3186.
    1. Neubauer AP, Voss W, Wachtendorf M, Jungmann T. Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann Neurol. 2010;67(5):657–66.
    1. O'Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35(3):549–56. doi: 10.2307/2530245.

Source: PubMed

3
Abonner