Frequency specific modulation of human somatosensory cortex

Matteo Feurra, Walter Paulus, Vincent Walsh, Ryota Kanai, Matteo Feurra, Walter Paulus, Vincent Walsh, Ryota Kanai

Abstract

Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One-way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS) over the primary somatosensory cortex (SI) could elicit tactile sensations in humans in a frequency-dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz) and high gamma (52-70 Hz) frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz) stimulation. These findings highlight the frequency dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous electroencephalography/magnetoencephalography studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

Keywords: frequencies; somatosensory cortex; tACS; tactile.

Figures

Figure 1
Figure 1
Tactile sensation ratings per frequency band. The rating score scaled from 0 (no sensation at all) to 3 (maximum sensation). The error bars correspond to 1 SEM. Conditions with significant p-values of post hoc comparisons are labeled with one asterisk (*) for p < 0.05 which indicates significant differences between the experimental conditions. Changes of tactile rating are evident for alpha and gamma bands.
Figure A1
Figure A1
Tactile sensation ratings per frequency band. The rating score scaled from 0 (no sensation at all) to 3 (maximum sensation). The error bars correspond to one standard error of the mean (SEM).

References

    1. Arnfred S. M., Hansen L. K., Parnas J., Morup M. (2007). Proprioceptive evoked gamma oscillations. Brain Res. 1147, 167–17410.1016/j.brainres.2007.02.068
    1. Babiloni C., Babiloni F., Carducci F., Cappa S., Cincotti F., Del P. C., Miniussi C., Moretti D. V., Pasqualetti P., Rossi S., Sosta K., Rossini P. M. (2004). Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model. Neuroimage 21, 1576–158410.1016/j.neuroimage.2003.11.023
    1. Babiloni C., Vecchio F., Bares M., Brazdil M., Nestrasil I., Eusebi F., Rossini P. M., Rektor I. (2008). Functional coupling between anterior prefrontal cortex (BA10) and hand muscle contraction during intentional and imitative motor acts. Neuroimage 39, 1314–132310.1016/j.neuroimage.2007.09.043
    1. Bauer M., Oostenveld R., Peeters M., Fries P. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci. 26, 490–50110.1523/JNEUROSCI.5228-04.2006
    1. Benoit O., Daurat A., Prado J. (2000). Slow (0.7–2 Hz) and fast ( 2,–4 Hz) delta components are differently correlated to theta, alpha and beta frequency bands during NREM sleep. Clin. Neurophysiol. 111, 2103–210610.1016/S1388-2457(00)00470-3
    1. Betti V., Zappasodi F., Rossini P. M., Aglioti S. M., Tecchio F. (2009). Synchronous with your feelings: sensorimotor {gamma} band and empathy for pain. J. Neurosci. 29, 12384–1239210.1523/JNEUROSCI.2759-09.2009
    1. Cebolla A. M., De S. C., Bengoetxea A., Leurs F., Balestra C., d'Alcantara P., Palmero-Soler E., Dan B., Cheron G. (2009). Movement gating of beta/gamma oscillations involved in the N30 somatosensory evoked potential. Hum. Brain Mapp. 30, 1568–157910.1002/hbm.20624
    1. Cheyne D., Gaetz W., Garnero L., Lachaux J. P., Ducorps A., Schwartz D., Varela F. J. (2003). Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res. Cogn. Brain Res. 17, 599–611
    1. Crone N. E., Miglioretti D. L., Gordon B., Sieracki J. M., Wilson M. T., Uematsu S., Lesser R. P. (1998). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121(Pt 12), 2271–2299
    1. Datta A., Elwassif M., Battaglia F., Bikson M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J. Neural Eng. 5, 163–17410.1088/1741-2560/5/2/007
    1. Datta A., Elwassif M., Bikson M. (2009). Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 670–673
    1. Del Percio C., Infarinato F., Iacoboni M., Marzano N., Soricelli A., Aschieri P., Eusebi F., Babiloni C. (2010). Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clin. Neurophysiol. 121, 482–49110.1016/j.clinph.2009.12.004
    1. Dockstader C., Cheyne D., Tannock R. (2010). Cortical dynamics of selective attention to somatosensory events. Neuroimage 49, 1777–178510.1016/j.neuroimage.2009.09.035
    1. Engel A. K., Fries P., Singer W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716
    1. Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480
    1. Jones S. R., Pritchett D. L., Stufflebeam S. M., Hamalainen M., Moore C. I. (2007). Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J. Neurosci. 27, 10751–1076410.1523/JNEUROSCI.0482-07.2007
    1. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. (2008). Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 18, 1839–1843
    1. Kanai R., Paulus W., Walsh V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121, 1551–155410.1016/j.clinph.2010.03.022
    1. Kanayama N., Ohira H. (2009). Multisensory processing and neural oscillatory responses: separation of visuotactile congruency effect and corresponding electroencephalogram activities. Neuroreport 20, 289–29310.1097/WNR.0b013e328322ca63
    1. Kanayama N., Sato A., Ohira H. (2009). The role of gamma band oscillations and synchrony on rubber hand illusion and crossmodal integration. Brain Cogn. 69, 19–2910.1016/j.bandc.2008.05.001
    1. Kirov R., Weiss C., Siebner H. R., Born J., Marshall L. (2009). Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl. Acad. Sci. U.S.A. 106, 15460–15465
    1. Kisley M. A., Cornwell Z. M. (2006). Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and cross-modal stimulation. Clin. Neurophysiol. 11, 2549–2563
    1. Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195
    1. Leocani L., Toro C., Manganotti P., Zhuang P., Hallett M. (1997). Event-related coherence and event-related desynchronization/synchronization in the 10 Hz and 20 Hz EEG during self-paced movements. Electroencephalogr. Clin. Neurophysiol. 104, 199–206
    1. Linkenkaer-Hansen K., Nikulin V. V., Palva S., Ilmoniemi R. J., Palva J. M. (2004). Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24, 10186–1019010.1523/JNEUROSCI.2584-04.2004
    1. Llinas R. R., Steriade M. (2006). Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 95, 3297–330810.1152/jn.00166.2006
    1. Marshall L., Helgadottir H., Molle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–61310.1038/nature05278
    1. Nitsche M. A., Doemkes S., Karakose T., Antal A., Liebetanz D., Lang N., Tergau F., Paulus W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–311710.1152/jn.01312.2006
    1. Paulus W. (2010). On the difficulties of separating retinal from cortical origins of phosphenes when using transcranial alternating current stimulation (tACS). Clin. Neurophysiol. 121, 987–99110.1016/j.clinph.2010.01.029
    1. Pfurtscheller G. (1981). Central beta rhythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol. 51, 253–264
    1. Pfurtscheller G., Neuper C. (1992). Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport 3, 1057–106010.1097/00001756-199212000-00006
    1. Pfurtscheller G., Stancak A., Jr., Neuper C. (1996). Event-related synchronization (ERS) in the alpha band – an electrophysiological correlate of cortical idling: a review. Int. J. Psychophysiol. 24, 39–4610.1016/S0167-8760(96)00066-9
    1. Pogosyan A., Gaynor L. D., Eusebio A., Brown P. (2009). Boosting cortical activity at beta-band frequencies slows movement in humans. Curr. Biol. 19, 1637–1641
    1. Puligheddu M., de Munck J. C., Stam C. J., Verbunt J., de Jongh A., van Dijk B. W., Marrosu F. (2005). Age distribution of MEG spontaneous theta activity in healthy subjects. Brain Topogr. 17, 165–17510.1007/s10548-005-4449-2
    1. Rohracher H. (1935). Über subjektive Lichterscheinungen bei Reizung mit Wechselströmen. Z. Sinnesphysiol. 66, 164–181
    1. Schutter D. J., Hortensius R. (2010). Retinal origin of phosphenes to transcranial alternating current stimulation. Clin. Neurophysiol. 121, 1080–108410.1016/j.clinph.2009.10.038
    1. Schwarz F. (1947). Über die elektrische Reizbarkeit des Auges bei Hell- und Dunkeladaptation. Pflugers Arch. 249, 67–86
    1. Schwiedrzik C. M. (2009). Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front. Integr. Neurosci. 3:6.10.3389/neuro.07.006.2009
    1. Swettenham J. B., Muthukumaraswamy S. D., Singh K. D. (2009). Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. J. Neurophysiol. 102, 1241–125310.1152/jn.91044.2008
    1. Thut G., Miniussi C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 13, 182–189
    1. Wagner T., Valero-Cabre A., Pascual-Leone A. (2007). Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9, 527–565
    1. Yordanova J., Kolev V. (1998). Event-related alpha oscillations are functionally associated with P300 during information processing. Neuroreport 9, 3159–316410.1097/00001756-199810050-00007
    1. Yousry T. A., Schmid U. D., Alkadhi H., Schmidt D., Peraud A., Buettner A., Winkler P. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1), 141–157
    1. Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5, e13766.10.1371/journal.pone.0013766
    1. Zaghi S., de Freitas R. L., de Oliveira L. M., El-Nazer R., Menning S., Tadini L., Fregni F. (2010). Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS). Neurosci. Lett. 479, 211–214

Source: PubMed

3
Abonner