Pyrotinib combined with thalidomide in advanced non-small-cell lung cancer patients harboring HER2 exon 20 insertions (PRIDE): protocol of an open-label, single-arm phase II trial

Xinghao Ai, Zhengbo Song, Hong Jian, Zhen Zhou, Zhiwei Chen, Yongfeng Yu, Ziming Li, Shun Lu, Xinghao Ai, Zhengbo Song, Hong Jian, Zhen Zhou, Zhiwei Chen, Yongfeng Yu, Ziming Li, Shun Lu

Abstract

Background: Standard therapy for human epidermal growth factor receptor 2 (HER2)-mutant non-small-cell lung cancer (NSCLC) is lacking. The clinical benefits with pan-HER inhibitors (afatinib, neratinib, and dacomitinib), anti-HER2 antibody drug conjugate (ADC) trastuzumab emtansine, and an emerging irreversible tyrosine kinase inhibitor (TKI) poziotinib were modest. Another new ADC trastuzumab deruxtecan showed encouraging outcomes, but only phase I study was completed. Pyrotinib, another emerging irreversible epidermal growth factor receptor (EGFR)/HER2 dual TKI, has been approved in HER2-positive breast cancer in 2018 in China. It has shown promising antitumor activity against HER2-mutant NSCLC in phase II trials, but pyrotinib-related diarrhea remains an issue. The antiangiogenic and immunomodulatory drug thalidomide is a cereblon-based molecular glue that can induce the degradation of the IKAROS family transcription factors IKZF1 and IKZF3. The use of thalidomide can also decrease gastrointestinal toxicity induced by anti-cancer therapy.

Methods: This is an open-label, single-arm phase II trial. A total of 39 advanced NSCLC patients with HER2 exon 20 insertions and ≤ 2 lines of prior chemotherapy will be recruited, including treatment-naïve patients who refuse chemotherapy. Patients are allowed to have prior therapy with immune checkpoint inhibitors and/or antiangiogenic agents. Those who have prior HER2-targeting therapy or other gene alterations with available targeted drugs are excluded. Eligible patients will receive oral pyrotinib 400 mg once daily and oral thalidomide 200 mg once daily until disease progression or intolerable toxicity. The primary endpoint is objective response rate.

Discussion: The addition of thalidomide to pyrotinib is expected to increase the clinical benefit in advanced NSCLC patients with HER2 exon 20 insertions, and reduce the incidence of pyrotinib-related diarrhea. We believe thalidomide is the stone that can hit two birds.

Trial registration: ClinicalTrials.gov Identifier: NCT04382300 . Registered on May 11, 2020.

Keywords: Human epidermal growth factor receptor 2; Non-small-cell lung cancer; Protocol; Pyrotinib; Thalidomide.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Study design

References

    1. Mazières J, Peters S, Lepage B, Cortot AB, Barlesi F, Beau-Faller M, Besse B, Blons H, Mansuet-Lupo A, Urban T, Moro-Sibilot D, Dansin E, Chouaid C, Wislez M, Diebold J, Felip E, Rouquette I, Milia JD, Gautschi O. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol. 2013;31(16):1997–2003. doi: 10.1200/JCO.2012.45.6095.
    1. Pillai RN, Behera M, Berry LD, Rossi MR, Kris MG, Johnson BE, Bunn PA, Ramalingam SS, Khuri FR. HER2 mutations in lung adenocarcinomas: a report from the lung Cancer mutation consortium. Cancer. 2017;123(21):4099–4105. doi: 10.1002/cncr.30869.
    1. Kim EK, Kim KA, Lee CY, Shim HS. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma. PLoS One. 2017;12(2):e0171280. doi: 10.1371/journal.pone.0171280.
    1. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba II, Fong KM, Toyooka S, Shimizu N, Fujisawa T, Minna JD, Gazdar AF. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005;65(5):1642–1646. doi: 10.1158/0008-5472.CAN-04-4235.
    1. Tomizawa K, Suda K, Onozato R, Kosaka T, Endoh H, Sekido Y, Shigematsu H, Kuwano H, Yatabe Y, Mitsudomi T. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer. 2011;74(1):139–144. doi: 10.1016/j.lungcan.2011.01.014.
    1. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, Chen H, Fujimoto J, Kugler K, Franklin WA, Iafrate AJ, Ladanyi M, Kris MG, Johnson BE, Bunn PA, Minna JD, Kwiatkowski DJ, LCMC Investigators Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung Cancer mutation consortium experience. J Thorac Oncol. 2015;10(5):768–777. doi: 10.1097/JTO.0000000000000516.
    1. Bu S, Wang R, Pan Y, Yu S, Shen X, Li Y, Sun Y, Chen H. Clinicopathologic characteristics of patients with HER2 insertions in non-small cell lung Cancer. Ann Surg Oncol. 2017;24(1):291–297. doi: 10.1245/s10434-015-5044-8.
    1. Dziadziuszko R, Smit EF, Dafni U, Wolf J, Wasąg B, Biernat W, Finn SP, Kammler R, Tsourti Z, Rabaglio M, Ruepp B, Roschitzki-Voser H, Stahel RA, Felip E, Peters S. Afatinib in NSCLC with HER2 mutations: results of the prospective, open-label phase II NICHE trial of European thoracic oncology platform (ETOP) J Thorac Oncol. 2019;14(6):1086–1094. doi: 10.1016/j.jtho.2019.02.017.
    1. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, Juric D, Quinn DI, Moreno V, Doger B, Mayer IA, Boni V, Calvo E, Loi S, Lockhart AC, Erinjeri JP, Scaltriti M, Ulaner GA, Patel J, Tang J, Beer H, Selcuklu SD, Hanrahan AJ, Bouvier N, Melcer M, Murali R, Schram AM, Smyth LM, Jhaveri K, Li BT, Drilon A, Harding JJ, Iyer G, Taylor BS, Berger MF, Cutler Jr RE, Xu F, Butturini A, Eli LD, Mann G, Farrell C, Lalani AS, Bryce RP, Arteaga CL, Meric-Bernstam F, Baselga J, Solit DB. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 2018;554(7691):189–194. doi: 10.1038/nature25475.
    1. Kris MG, Camidge DR, Giaccone G, Hida T, Li BT, O'Connell J, Taylor I, Zhang H, Arcila ME, Goldberg Z, Jänne PA. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol. 2015;26(7):1421–1427. doi: 10.1093/annonc/mdv186.
    1. Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, Ulaner GA, Offin M, Feldman D, Hembrough T, Cecchi F, Schwartz S, Pavlakis N, Clarke S, Won HH, Brzostowski EB, Riely GJ, Solit DB, Hyman DM, Drilon A, Rudin CM, Berger MF, Baselga J, Scaltriti M, Arcila ME, Kris MG. Ado-Trastuzumab Emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–2537. doi: 10.1200/JCO.2018.77.9777.
    1. Robichaux JP, Elamin YY, Vijayan RSK, Nilsson MB, Hu L, He J, Zhang F, Pisegna M, Poteete A, Sun H, Li S, Chen T, Han H, Negrao MV, Ahnert JR, Diao L, Wang J, le X, Meric-Bernstam F, Routbort M, Roeck B, Yang Z, Raymond VM, Lanman RB, Frampton GM, Miller VA, Schrock AB, Albacker LA, Wong KK, Cross JB, Heymach JV. Pan-Cancer Landscape and Analysis of ERBB2 Mutations Identifies Poziotinib as a Clinically Active Inhibitor and Enhancer of T-DM1 Activity. Cancer Cell. 2019;36(4):457.e7. doi: 10.1016/j.ccell.2019.09.001.
    1. Tsurutani J, Iwata H, Krop I, Jänne PA, Doi T, Takahashi S, Park H, Redfern C, Tamura K, Wise-Draper TM, Saito K, Sugihara M, Singh J, Jikoh T, Gallant G, Li BT. Targeting HER2 with Trastuzumab Deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020;10(5):688–701. doi: 10.1158/-19-1014.
    1. Ma F, Ouyang Q, Li W, Jiang Z, Tong Z, Liu Y, Li H, Yu S, Feng J, Wang S, Hu X, Zou J, Zhu X, Xu B. Pyrotinib or Lapatinib combined with Capecitabine in HER2-positive metastatic breast Cancer with prior Taxanes, Anthracyclines, and/or Trastuzumab: a randomized, Phase II Study. J Clin Oncol. 2019;37(29):2610–2619. doi: 10.1200/JCO.19.00108.
    1. Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, Rivard C, Gao G, Ng TL, Tu MM, Yu H, Ji H, Zhou C, Ren S, Zhang J, Bunn P, Doebele RC, Camidge DR, Hirsch FR. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 2019;30(3):447–455. doi: 10.1093/annonc/mdy542.
    1. Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, Shu Y, Hu Y, Fan Y, Fang J, Chen G, Zhao J, He J, Wu F, Zou J, Zhu X, Lin X. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm, Phase II Study. J Clin Oncol. 2020;38(24):2753–2761. doi: 10.1200/JCO.20.00297.
    1. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeldis J, Siegel D, Crowley J, Barlogie B. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–1571. doi: 10.1056/NEJM199911183412102.
    1. Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol. 2003;21(1):16–19. doi: 10.1200/JCO.2003.03.139.
    1. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith REJ, Harper JW, Jenkins JL, Thomä NH. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature. 2014;512(7512):49–53. doi: 10.1038/nature13527.
    1. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol. 2003;81(3):171–175. doi: 10.1046/j.1440-1711.2003.01159.x.
    1. Pan B, Lentzsch S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacol Ther. 2012;136(1):56–68. doi: 10.1016/j.pharmthera.2012.07.004.
    1. Sun X, Xu Y, Wang Y, Chen Q, Liu L, Bao Y. Synergistic inhibition of thalidomide and Icotinib on human non-small cell lung carcinomas through ERK and AKT signaling. Med Sci Monit. 2018;24:3193–3203. doi: 10.12659/MSM.909977.
    1. Xia X, Liu Y, Liao Y, Guo Z, Huang C, Zhang F, Jiang L, Wang X, Liu J, Huang H. Synergistic effects of gefitinib and thalidomide treatment on EGFR-TKI-sensitive and -resistant NSCLC. Eur J Pharmacol. 2019;856:172409. doi: 10.1016/j.ejphar.2019.172409.
    1. Wang G-H, Wu P-F, Zhang L-H, Fang P, Chen Y, Zuo G, Wu Y-Q, Wang S-H, Sun G-P. Use of erlotinib and thalidomide in advanced NSCLC patients with acquired resistance to erlotinib: a pilot study. Pathol Res Pract. 2018;214(2):263–267. doi: 10.1016/j.prp.2017.10.016.
    1. Govindarajan R, Heaton KM, Broadwater R, Zeitlin A, Lang NP, Hauer-Jensen M. Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet. 2000;356(9229):566–567. doi: 10.1016/S0140-6736(00)02586-1.
    1. Miller AA, Case D, Atkins JN, Giguere JK, Bearden JD. Phase II study of carboplatin, irinotecan, and thalidomide in patients with advanced non-small cell lung cancer. J Thorac Oncol. 2006;1(8):832–836. doi: 10.1097/01243894-200610000-00012.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Goldstraw P. Staging manual in thoracic oncology. 1. Orange Park: Editorial Rx Press; 2009.
    1. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–376. doi: 10.1093/jnci/85.5.365.
    1. Bergman B, Aaronson NK, Ahmedzai S, Kaasa S, Sullivan M. The EORTC QLQ-LC13: a modular supplement to the EORTC Core quality of life questionnaire (QLQ-C30) for use in lung cancer clinical trials. EORTC study group on quality of life. Eur J Cancer. 1994;30A(5):635–642. doi: 10.1016/0959-8049(94)90535-5.
    1. LeBlanc TW, Abernethy AP. Patient-reported outcomes in cancer care - hearing the patient voice at greater volume. Nat Rev Clin Oncol. 2017;14(12):763–772. doi: 10.1038/nrclinonc.2017.153.
    1. Wang N, Xu P, Liu Y, Zhao P, Ruan J, Zheng Y, Jin J, Wang S, Yao J, Xiang D, Zhang D, Li N, Kang H, Dai Z. Efficacy and safety of thalidomide for chemotherapy-induced nausea and vomiting. J Cancer. 2020;11(15):4560–4570. doi: 10.7150/jca.45678.
    1. Aguiar PM, de Mendonça LT, Colleoni GWB, Storpirtis S. Efficacy and safety of bortezomib, thalidomide, and lenalidomide in multiple myeloma: an overview of systematic reviews with meta-analyses. Crit Rev Oncol Hematol. 2017;113:195–212. doi: 10.1016/j.critrevonc.2017.03.014.
    1. Bringhen S, De Wit E, Dimopoulos M-A. New Agents in Multiple Myeloma: An Examination of Safety Profiles. Clin Lymphoma Myeloma Leuk. 2017;17(7):407.e5. doi: 10.1016/j.clml.2017.05.003.

Source: PubMed

3
Abonner