Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study

Dan Stieper Karbing, Mauro Panigada, Nicola Bottino, Elena Spinelli, Alessandro Protti, Stephen Edward Rees, Luciano Gattinoni, Dan Stieper Karbing, Mauro Panigada, Nicola Bottino, Elena Spinelli, Alessandro Protti, Stephen Edward Rees, Luciano Gattinoni

Abstract

Background: Several studies have found only a weak to moderate correlation between oxygenation and lung aeration in response to changes in PEEP. This study aimed to investigate the association between changes in shunt, low and high ventilation/perfusion (V/Q) mismatch, and computed tomography-measured lung aeration following an increase in PEEP in patients with ARDS.

Methods: In this preliminary study, 12 ARDS patients were subjected to recruitment maneuvers followed by setting PEEP at 5 and then either 15 or 20 cmH2O. Lung aeration was measured by computed tomography. Values of pulmonary shunt and low and high V/Q mismatch were calculated by a model-based method from measurements of oxygenation, ventilation, and metabolism taken at different inspired oxygen levels and an arterial blood gas sample.

Results: Increasing PEEP resulted in reduced values of pulmonary shunt and the percentage of non-aerated tissue, and an increased percentage of normally aerated tissue (p < 0.05). Changes in shunt and normally aerated tissue were significantly correlated (r = - 0.665, p = 0.018). Three distinct responses to increase in PEEP were observed in values of shunt and V/Q mismatch: a beneficial response in seven patients, where shunt decreased without increasing high V/Q; a detrimental response in four patients where both shunt and high V/Q increased; and a detrimental response in a patient with reduced shunt but increased high V/Q mismatch. Non-aerated tissue decreased with increased PEEP in all patients, and hyperinflated tissue increased only in patients with a detrimental response in shunt and V/Q mismatch.

Conclusions: The results show that improved lung aeration following an increase in PEEP is not always consistent with reduced shunt and V/Q mismatch. Poorly matched redistribution of ventilation and perfusion, between dependent and non-dependent regions of the lung, may explain why patients showed detrimental changes in shunt and V/Q mismatch on increase in PEEP, despite improved aeration.

Trial registration: ClinicalTrails.gov, NCT04067154. Retrospectively registered on August 26, 2019.

Keywords: ARDS; CT; Lung aeration; PEEP; Shunt; Ventilation/perfusion mismatch.

Conflict of interest statement

DSK and SER’s institution has received funding from Mermaid Care A/S. DSK and SER have performed consultancy work for Mermaid Care A/S. DSK and SER are minor shareholders in Mermaid Care A/S, and SER is an unpaid board member of the company. MP, NB, ES, AP, and LG have no further potential conflicts of interest.

Figures

Fig. 1
Fig. 1
Study protocol. Protocol steps and measurements performed in the protocol. Separation of protocol steps between different locations is indicated (dashed lines). Measurements of shunt and V/Q mismatch were performed in the intensive care unit (ICU). Lung aeration measurements were performed in the CT lab
Fig. 2
Fig. 2
Data analysis example. Patient example of measured data and results of data analysis describing gas exchange and lung aeration. a Input data for calculating shunt and V/Q mismatch parameters. Left subplot shows measured FETO2 versus SpO2 (+) and SaO2 at low (▽) and high (△) PEEP along with curves illustrating model-fitted simulations at low (solid curve) and high (dashed curve) PEEP. Right subplot shows measured FETCO2 versus simulated PaCO2 (○) and measured PaCO2 at low (▽) and high (△) PEEP. b CT scans taken at 5, 20, and 45 cmH2O. c Resulting gas exchange model parameters from the model fit to the measured data illustrated in a. d Resulting CT HU frequency distributions from CT scans illustrated in b for PEEP 5 (solid line), 20 (dashed line), and 45 (dotted line) cmH2O
Fig. 3
Fig. 3
Correlation of lung aeration and shunt and V/Q mismatch. Scatterplots of changes in gas exchange parameters and CT scan lung aeration with increases in PEEP (values at high minus low PEEP) and linear regression lines (solid lines). a Changes in ΔA-cPCO2 versus changes in hyperinflated lung regions. b Changes in ΔA-cPO2 versus changes in poorly aerated lung regions. c Changes in shunt versus changes in non-aerated lung regions. d Changes in shunt versus changes in normally aerated lung regions
Fig. 4
Fig. 4
Individual patient changes in shunt, V/Q mismatch, and lung aeration. Changes from low to high PEEP in shunt and V/Q mismatch (top row) and lung aeration (bottom row). Beneficial and detrimental responses in shunt and V/Q mismatch to an increase in PEEP are marked by line styles, with solid and dashed lines signifying beneficial and detrimental responses, respectively. The combinations of symbols and line styles are unique per patient so that individual patients can be identified across all subplots

References

    1. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354(17):1775–1786. doi: 10.1056/NEJMoa052052.
    1. Brower RG, Lanken P, MacIntyre N, Matthay M, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327. doi: 10.1056/NEJMoa032193.
    1. Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, et al. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988;69(6):824–832. doi: 10.1097/00000542-198812000-00005.
    1. Cressoni M, Caironi P, Polli F, Carlesso E, Chiumello D, Cadringher P, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med. 2008;36(3):669–675. doi: 10.1097/01.CCM.0000300276.12074.E1.
    1. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252–264. doi: 10.1097/CCM.0b013e3182a6384f.
    1. Lumb AB. Nunn’s applied respiratory physiology. Oxford: Butterworth-Heinemann; 2000.
    1. Karbing DS, Kjaergaard S, Smith BW, Espersen K, Allerod C, Andreassen S, et al. Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care. 2007;11(6):R118. doi: 10.1186/cc6174.
    1. Wagner P, Saltzman H, West J. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974;36:588–599. doi: 10.1152/jappl.1974.36.5.588.
    1. Dantzker D, Brook C, Dehart P, Lynch J, Weg J. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis. 1979;120(5):1039.
    1. Melot C. Contribution of multiple inert gas elimination technique to pulmonary medicine. 5. Ventilation-perfusion relationships in acute respiratory failure. Thorax. 1994;49(12):1251–1258. doi: 10.1136/thx.49.12.1251.
    1. Ralph DD, Robertson HT, Weaver LJ, Hlastala MP, Carrico CJ, Hudson LD. Distribution of ventilation and perfusion during positive end-expiratory pressure in the adult respiratory distress syndrome. Am Rev Respir Dis. 1985;131(1):54–60.
    1. Karbing DS, Kjaergaard S, Andreassen S, Espersen K, Rees SE. Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys. 2011;33(2):240–248. doi: 10.1016/j.medengphy.2010.10.007.
    1. Kjaergaard S, Rees S, Malczynski J, Nielsen JA, Thorgaard P, Toft E, et al. Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med. 2003;29(5):727–734. doi: 10.1007/s00134-003-1708-0.
    1. Staehr-Rye A, Rasmussen L, Rosenberg J, Steen-Hansen C, Nielsen T, Rosenstock C, et al. Minimal impairment in pulmonary function following laparoscopic surgery. Acta Anaesthesiol Scand. 2014;58(2):198–205. doi: 10.1111/aas.12254.
    1. Spadaro S, Karbing DS, Mauri T, Marangoni E, Mojoli F, Valpiani G, et al. Effect of positive end-expiratory pressure on pulmonary shunt and dynamic compliance during abdominal surgery. Br J Anaesth. 2016;116(6):855–861. doi: 10.1093/bja/aew123.
    1. Spadaro S, Grasso S, Karbing DS, Fogagnolo A, Contoli M, Bollini G, et al. Physiologic evaluation of ventilation perfusion mismatch and respiratory mechanics at different positive end-expiratory pressure in patients undergoing protective one-lung ventilation. Anesthesiol. 2018;128(3):531–538. doi: 10.1097/ALN.0000000000002011.
    1. Rees SE, Kjaergaard S, Andreassen S, Hedenstierna G. Reproduction of MIGET retention and excretion data using a simple mathematical model of gas exchange in lung damage caused by oleic acid infusion. J Appl Physiol. 2006;101(3):826–832. doi: 10.1152/japplphysiol.01481.2005.
    1. Rees SE, Kjaergaard S, Andreassen S, Hedenstierna G. Reproduction of inert gas and oxygenation data: a comparison of the MIGET and a simple model of pulmonary gas exchange. Intensive Care Med. 2010;36(12):2117–2124. doi: 10.1007/s00134-010-1981-7.
    1. Definition Task Force A, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.
    1. Rees SE, Kjaergaard S, Thorgaard P, Malczynski J, Toft E, Andreassen S. The automatic lung parameter estimator (ALPE) system: non-invasive estimation of pulmonary gas exchange parameters in 10-15 minutes. J Clin Monit Comput. 2002;17(1):43–52. doi: 10.1023/A:1015456818195.
    1. Thomsen LP, Karbing DS, Smith BW, Murley D, Weinreich UM, Kjærgaard S, et al. Clinical refinement of the automatic lung parameter estimator (ALPE) J Clin Monit Comput. 2013;27(3):341–350. doi: 10.1007/s10877-013-9442-9.
    1. Rees SE, Andreassen S. Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng. 2005;33(3):209–264. doi: 10.1615/CritRevBiomedEng.v33.i3.10.
    1. Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164(9):1701–1711. doi: 10.1164/ajrccm.164.9.2103121.
    1. Gattinoni L, Chiumello D, Cressoni M, Valenza F. Pulmonary computed tomography and adult respiratory distress syndrome. Swiss Med Wkly. 2005;135(11–12):169–174.
    1. Brunet F, Jeanbourquin D, Monchi M, Mira JP, Fierobe L, Armaganidis A, et al. Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med. 1995;152(2):524–530. doi: 10.1164/ajrccm.152.2.7633702.
    1. Malbouisson LM, Muller J, Constantin J, Lu Q, Puybasset L, Rouby J. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1444–1450. doi: 10.1164/ajrccm.163.6.2005001.
    1. Goodman LR, Fumagalli R, Tagliabue P, Tagliabue M, Ferrario M, Gattinoni L, et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations 1. Radiology. 1999;213(2):545–552. doi: 10.1148/radiology.213.2.r99nv42545.
    1. Wolf SJ, Reske AP, Hammermüller S, Costa EL, Spieth PM, Hepp P, et al. Correlation of lung collapse and gas exchange - a computer tomographic study in sheep and pigs with atelectasis in otherwise normal lungs. PLoS One. 2015;10(8):e0135272. doi: 10.1371/journal.pone.0135272.
    1. Tokics L, Hedenstierna G, Strandberg A, Brismar B, Lundquist H. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology. 1987;66(2):157–167. doi: 10.1097/00000542-198702000-00009.
    1. Pelosi P, Goldner M, McKIBBEN A, Adams A, ECCHER G, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med. 2001;164(1):122–130. doi: 10.1164/ajrccm.164.1.2007010.
    1. Brett SJ, Hansell DM, Evans TW. Clinical correlates in acute lung injury: response to inhaled nitric oxide. CHEST J. 1998;114(5):1397–1404. doi: 10.1378/chest.114.5.1397.
    1. Crotti S, MASCHERONI D, Caironi P, Pelosi P, Ronzoni G, Mondino M, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164(1):131–140. doi: 10.1164/ajrccm.164.1.2007011.
    1. Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268–278. doi: 10.1164/rccm.200506-976OC.
    1. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–724. doi: 10.1152/jappl.1964.19.4.713.
    1. Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. Minerva Anestesiol. 2010;76(12):1024.
    1. Bikker IG, Preis C, Egal M, Bakker J, Gommers D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit Care. 2011;15(4):R193. doi: 10.1186/cc10354.
    1. Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C, Bohm SH, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–1137. doi: 10.1007/s00134-009-1447-y.
    1. Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–1934. doi: 10.1007/s00134-006-0383-3.
    1. Karbing DS, Allerød C, Thomsen LP, Espersen K, Thorgaard P, Andreassen S, et al. Retrospective evaluation of a decision support system for controlled mechanical ventilation. Med Biol Eng Comput. 2012;50(1):43–51. doi: 10.1007/s11517-011-0843-y.
    1. Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest. 1980;77(5):636–642. doi: 10.1378/chest.77.5.636.
    1. Nunn JF, Campbell EJ, Peckett BW. Anatomical subdivisions of the volume of respiratory dead space and effect of position of the jaw. J Appl Physiol. 1959;14(2):174–176. doi: 10.1152/jappl.1959.14.2.174.
    1. Hinkson CR, Benson MS, Stephens LM, Deem S. The effects of apparatus dead space on PaCO2 in patients receiving lung-protective ventilation. Respir Care. 2006;51(10):1140–1144.
    1. Hedenstierna G, Sandhagen B. Assessing dead space. A meaningful variable? Minerva Anestesiol. 2006;72(6):521–528.
    1. Piiper J. Diffusion-perfusion inhomogeneity and alveolar-arterial O2 diffusion limitation: theory. Respir Physiol. 1992;87(3):349–356. doi: 10.1016/0034-5687(92)90016-P.
    1. Agustí A, Barbera JA. Contribution of multiple inert gas elimination technique to pulmonary medicine. 2. Chronic pulmonary diseases: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Thorax. 1994;49(9):924–932. doi: 10.1136/thx.49.9.924.
    1. Torre-Bueno J, Wagner P, Saltzman H, Gale G, Moon R. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol. 1985;58(3):989–995. doi: 10.1152/jappl.1985.58.3.989.
    1. Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61(1):260–270. doi: 10.1152/jappl.1986.61.1.260.
    1. Kjærgaard S, Rees SE, Nielsen JA, Freundlich M, Thorgaard P, Andreassen S. Modelling of hypoxaemia after gynaecological laparotomy. Acta Anaesthesiol Scand. 2001;45(3):349–356. doi: 10.1034/j.1399-6576.2001.045003349.x.
    1. Derosa S, Borges JB, Segelsjö M, Tannoia A, Pellegrini M, Larsson A, et al. Reabsorption atelectasis in a porcine model of ARDS: regional and temporal effects of airway closure, oxygen, and distending pressure. J Appl Physiol. 2013;115(10):1464–1473. doi: 10.1152/japplphysiol.00763.2013.
    1. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G. Optimal oxygen concentration during induction of general anesthesia. Anesthesiology. 2003;98(1):28–33. doi: 10.1097/00000542-200301000-00008.
    1. Mélot C, Naeije R, Hallemans R, Lejeune P, Mols P. Hypoxic pulmonary vasoconstriction and pulmonary gas exchange in normal man. Respir Physiol. 1987;68(1):11–27. doi: 10.1016/0034-5687(87)90073-9.
    1. Brimioulle S, Julien V, Gust R, Kozlowski JK, Naeije R, Schuster DP. Importance of hypoxic vasoconstriction in maintaining oxygenation during acute lung injury. Crit Care Med. 2002;30(4):874–880. doi: 10.1097/00003246-200204000-00027.
    1. Delcroix M, Melot C, Vermeulen F, Naeije R. Hypoxic pulmonary vasoconstriction and gas exchange in acute canine pulmonary embolism. J Appl Physiol (1985) 1996;80(4):1240–1248. doi: 10.1152/jappl.1996.80.4.1240.
    1. Domino KB, Hlastala MP, Eisenstein BL, Cheney FW. Effect of regional alveolar hypoxia on gas exchange in dogs. J Appl Physiol (1985) 1989;67(2):730–735. doi: 10.1152/jappl.1989.67.2.730.
    1. Marshall BE, Marshall C, Frasch F, Hanson CW. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 1. Physiologic concepts. Intensive Care Med. 1994;20(4):291–297. doi: 10.1007/BF01708968.
    1. Marshall BE, Hanson CW, Frasch F, Marshall C. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med. 1994;20(5):379–389. doi: 10.1007/BF01720916.
    1. Wagner PD. Assessment of gas exchange in lung disease: balancing accuracy against feasibility. Crit Care. 2007;11(6):182. doi: 10.1186/cc6198.

Source: PubMed

3
Abonner