Risk Factors, Diagnosis and Management of Bone Stress Injuries in Adolescent Athletes: A Narrative Review

Belinda Beck, Louise Drysdale, Belinda Beck, Louise Drysdale

Abstract

Physical activity is known to be beneficial for bone; however, some athletes who train intensely are at risk of bone stress injury (BSI). Incidence in adolescent athlete populations is between 3.9 and 19% with recurrence rates as high as 21%. Participation in physical training can be highly skeletally demanding, particularly during periods of rapid growth in adolescence, and when competition and training demands are heaviest. Sports involving running and jumping are associated with a higher incidence of BSI and some athletes appear to be more susceptible than others. Maintaining a very lean physique in aesthetic sports (gymnastics, figure skating and ballet) or a prolonged negative energy balance in extreme endurance events (long distance running and triathlon) may compound the risk of BSI with repetitive mechanical loading of bone, due to the additional negative effects of hormonal disturbances. The following review presents a summary of the epidemiology of BSI in the adolescent athlete, risk factors for BSI (physical and behavioural characteristics, energy balance and hormone disruption, growth velocity, sport-specific risk, training load, etc.), prevention and management strategies.

Keywords: adolescent; athletes; bone stress injury; injury management; risk factors; stress fracture.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Coronal plane MRI of T2 weighted image of 2nd metatarsal stress fracture (as indicated by the green arrow) in 14-year-old ballet student training 25–30 h per week.

References

    1. Uhthoff H.K., Jaworski Z.F. Periosteal stress-induced reactions resembling stress fractures. A radiologic and histologic study in dogs. Clin. Orthop. Relat. Res. 1985;199:284–291.
    1. Fredericson M., Bergman A.G., Hoffman K.L., Dillingham M.S. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am. J. Sports Med. 1995;23:472–481. doi: 10.1177/036354659502300418.
    1. Groshar D., Lam M., Even-Sapir E., Israel O., Front D. Stress fractures and bone pain: Are they closely associated? Injury. 1985;16:526–528. doi: 10.1016/0020-1383(85)90077-4.
    1. Crewe H., Elliott B., Couanis G., Campbell A., Alderson J. The lumbar spine of the young cricket fast bowler: An MRI study. J. Sci. Med. Sport. 2012;15:190–194. doi: 10.1016/j.jsams.2011.11.251.
    1. Beck B.R., Bergman A.G., Miner M., Arendt E.A., Klevansky A.B., Matheson G.O., Norling T.L., Marcus R. Tibial stress injury: Relationship of radiographic, nuclear medicine bone scanning, MR imaging, and CT Severity grades to clinical severity and time to healing. Radiology. 2012;263:811–818. doi: 10.1148/radiol.12102426.
    1. Wolff J. Das Gesetz der Transformation der Knochen. Hirschwald Verlag; Berlin, Germany: 1892.
    1. Eriksen E.F., Melsen F., Mosekilde L. Reconstruction of the resorptive site in iliac trabecular bone: A kinetic model for bone resorption in 20 normal individuals. Metab. Bone Dis. Relat. Res. 1984;5:235–242. doi: 10.1016/0221-8747(84)90065-1.
    1. Burr D.B. Remodeling and the repair of fatigue damage. Calcif. Tissue Int. 1993;53(Suppl. 1):S75–S81. doi: 10.1007/BF01673407.
    1. Flood A., Waddington G., Thompson K., Cathcart S. Increased conditioned pain modulation in athletes. J. Sports Sci. 2017;35:1066–1072. doi: 10.1080/02640414.2016.1210196.
    1. Fischerauer S.F., Talaei-Khoei M., Bexkens R., Ring D.C., Oh L.S., Vranceanu A.M. What Is the Relationship of Fear Avoidance to Physical Function and Pain Intensity in Injured Athletes? Clin. Orthop. Relat. Res. 2018;476:754–763. doi: 10.1007/s11999.0000000000000085.
    1. Ducher G., Daly R.M., Bass S.L. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. J. Bone Miner. Res. 2009;24:1686–1692. doi: 10.1359/jbmr.090415.
    1. Lynch K.R., Kemper H.C.G., Turi-Lynch B., Agostinete R.R., Ito I.H., Luiz-De-Marco R., Rodrigues M.A., Jr., Fernandes R.A. Impact sports and bone fractures among adolescents. J. Sports Sci. 2017;35:2421–2426. doi: 10.1080/02640414.2016.1272708.
    1. Harding A.T., Beck B.R. Exercise, Osteoporosis, and Bone Geometry. Sports. 2017;5:29. doi: 10.3390/sports5020029.
    1. Bennell K.L., Malcolm S.A., Thomas S.A., Reid S.J., Brukner P.D., Ebeling P.R., Wark J.D. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am. J. Sports Med. 1996;24:810–818. doi: 10.1177/036354659602400617.
    1. Rizzone K.H., Ackerman K.E., Roos K.G., Dompier T.P., Kerr Z.Y. The Epidemiology of Stress Fractures in Collegiate Student-Athletes, 2004–2005 through 2013–2014 Academic Years. J. Athl. Train. 2017;52:966–975. doi: 10.4085/1062-6050-52.8.01.
    1. Changstrom B.G., Brou L., Khodaee M., Braund C., Comstock R.D. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am. J. Sports Med. 2015;43:26–33. doi: 10.1177/0363546514562739.
    1. Ekegren C.L., Quested R., Brodrick A. Injuries in pre-professional ballet dancers: Incidence, characteristics and consequences. J. Sci. Med. Sport. 2014;17:271–275. doi: 10.1016/j.jsams.2013.07.013.
    1. Tenforde A.S., Sayres L.C., McCurdy M.L., Sainani K.L., Fredericson M. Identifying sex-specific risk factors for stress fractures in adolescent runners. Med. Sci. Sports Exerc. 2013;45:1843–1851. doi: 10.1249/MSS.0b013e3182963d75.
    1. Iwamoto J., Takeda T. Stress fractures in athletes: Review of 196 cases. J. Orthop. Sci. 2003;8:273–278. doi: 10.1007/s10776-002-0632-5.
    1. Nose-Ogura S., Yoshino O., Dohi M., Kigawa M., Harada M., Hiraike O., Onda T., Osuga Y., Fujii T., Saito S. Risk factors of stress fractures due to the female athlete triad: Differences in teens and twenties. Scand. J. Med. Sci. Sports. 2019 doi: 10.1111/sms.13464.
    1. Ohta-Fukushima M., Mutoh Y., Takasugi S., Iwata H., Ishii S. Characteristics of stress fractures in young athletes under 20 years. J. Sports Med. Phys. Fit. 2002;42:198–206.
    1. Yagi S., Muneta T., Sekiya I. Incidence and risk factors for medial tibial stress syndrome and tibial stress fracture in high school runners. Knee Surg. Sports Traumatol. Arthrosc. 2013;21:556–563. doi: 10.1007/s00167-012-2160-x.
    1. Beck B.R. Tibial stress injuries. An aetiological review for the purposes of guiding management. Sports Med. 1998;26:265–279. doi: 10.2165/00007256-199826040-00005.
    1. Milgrom C., Giladi M., Simkin A., Rand N., Kedem R., Kashtan H., Stein M. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin. Orthop. Relat. Res. 1988;231:216–221.
    1. Miller T.L., Jamieson M., Everson S., Siegel C. Expected Time to Return to Athletic Participation After Stress Fracture in Division I Collegiate Athletes. Sports Health. 2018;10:340–344. doi: 10.1177/1941738117747868.
    1. Matheson G.O., Clement D.B., McKenzie D.C., Taunton J.E., Lloyd-Smith D.R., MacIntyre J.G. Stress fractures in athletes. A study of 320 cases. Am. J. Sports Med. 1987;15:46–58. doi: 10.1177/036354658701500107.
    1. Thomas R.E., Thomas B.C. A systematic review of injuries in gymnastics. Phys. Sportsmed. 2019;47:96–121. doi: 10.1080/00913847.2018.1527646.
    1. Dubravcic-Simunjak S., Kuipers H., Moran J., Pećina M., Simunjak B., Ambartsumov R., Sakai H., Mitchel D., Shobe J. Stress fracture prevalence in elite figure skaters. J. Sports Sci. Med. 2008;7:419–420.
    1. McInnis K.C., Ramey L.N. High-Risk Stress Fractures: Diagnosis and Management. PM&R. 2016;8:S113–S124. doi: 10.1016/j.pmrj.2015.09.019.
    1. Field A.E., Gordon C.M., Pierce L.M., Ramappa A., Kocher M.S. Prospective study of physical activity and risk of developing a stress fracture among preadolescent and adolescent girls. Arch. Pediatr. Adolesc. Med. 2011;165:723–728. doi: 10.1001/archpediatrics.2011.34.
    1. Sobrino F.J., Guillén P. Overuse Injuries in Professional Ballet: Influence of Age and Years of Professional Practice. Orthop. J. Sports Med. 2017;5:2325967117712704. doi: 10.1177/2325967117712704.
    1. Caine D., Goodwin B.J., Caine C.G., Bergeron G. Epidemiological Review of Injury in Pre-Professional Ballet Dancers. J. Danc. Med. Sci. 2015;19:140–148. doi: 10.12678/1089-313X.19.4.140.
    1. Lee K.T., Park Y.U., Jegal H., Kim K.C., Young K.W., Kim J.S. Factors associated with recurrent fifth metatarsal stress fracture. Foot Ankle Int. 2013;34:1645–1653. doi: 10.1177/1071100713507903.
    1. Yamaguchi S., Niki H., Akagi R., Yamamoto Y., Sasho T. Failure of Internal Fixation for Painful Bipartite Navicular in Two Adolescent Soccer Players: A Report of Two Cases. J. Foot Ankle Surg. 2016;55:1323–1326. doi: 10.1053/j.jfas.2016.01.015.
    1. Unnithan S., Thomas J. Not all ankle injuries are ankle sprains—Case of an isolated cuboid stress fracture. Clin. Pract. 2018;8:1093. doi: 10.4081/cp.2018.1093.
    1. Han J.S., Geminiani E.T., Micheli L.J. Epidemiology of Figure Skating Injuries: A Review of the Literature. Sports Health. 2018;10:532–537. doi: 10.1177/1941738118774769.
    1. Ranson C.A., Burnett A.F., Kerslake R.W. Injuries to the lower back in elite fast bowlers: Acute stress changes on MRI predict stress fracture. J. Bone Jt. Surg. Br. 2010;92:1664–1668. doi: 10.1302/0301-620X.92B12.24913.
    1. Engstrom C.M., Walker D.G. Pars interarticularis stress lesions in the lumbar spine of cricket fast bowlers. Med. Sci. Sports Exerc. 2007;39:28–33. doi: 10.1249/.
    1. Debnath U.K., Freeman B.J., Grevitt M.P., Sithole J., Scammell B.E., Webb J.K. Clinical outcome of symptomatic unilateral stress injuries of the lumbar pars interarticularis. Spine. 2007;32:995–1000. doi: 10.1097/01.brs.0000260978.10073.90.
    1. Stracciolini A., Casciano R., Levey Friedman H., Stein C.J., Meehan W.P., Micheli L.J. Pediatric sports injuries: A comparison of males versus females. Am. J. Sports Med. 2014;42:965–972. doi: 10.1177/0363546514522393.
    1. Dedmond B.T., Cory J.W., McBryde A. The hallucal sesamoid complex. J. Am. Acad. Orthop. Surg. 2006;14:745–753. doi: 10.5435/00124635-200612000-00006.
    1. Welck M.J., Hayes T., Pastides P., Khan W., Rudge B. Stress fractures of the foot and ankle. Injury. 2017;48:1722–1726. doi: 10.1016/j.injury.2015.06.015.
    1. D’Ailly P.N., Sluiter J.K., Kuijer P.P. Rib stress fractures among rowers: A systematic review on return to sports, risk factors and prevention. J. Sports Med. Phys. Fit. 2016;56:744–753.
    1. Funakoshi T., Furushima K., Kusano H., Itoh Y., Miyamoto A., Horiuchi Y., Sugawara M. First-Rib Stress Fracture in Overhead Throwing Athletes. J. Bone Jt. Surg. Am. 2019;101:896–903. doi: 10.2106/JBJS.18.01375.
    1. Low S., Kern M., Atanda A. First-rib stress fracture in two adolescent swimmers: A case report. J. Sports Sci. 2016;34:1266–1270. doi: 10.1080/02640414.2015.1108452.
    1. Christiansen E., Kanstrup I.L. Increased risk of stress fractures of the ribs in elite rowers. Scand. J. Med. Sci. Sports. 1997;7:49–52. doi: 10.1111/j.1600-0838.1997.tb00117.x.
    1. Lowery W.D., Kurzweil P.R., Forman S.K., Morrison D.S. Persistence of the olecranon physis: A cause of “little league elbow”. J. Shoulder Elb. Surg. 1995;4:143–147. doi: 10.1016/S1058-2746(05)80070-9.
    1. Tenforde A.S., Carlson J.L., Chang A., Sainani K.L., Shultz R., Kim J.H., Cutti P., Golden N.H., Fredericson M. Association of the Female Athlete Triad Risk Assessment Stratification to the Development of Bone Stress Injuries in Collegiate Athletes. Am. J. Sports Med. 2017;45:302–310. doi: 10.1177/0363546516676262.
    1. Tenforde A.S., Parziale A.L., Popp K.L., Ackerman K.E. Low Bone Mineral Density in Male Athletes Is Associated With Bone Stress Injuries at Anatomic Sites With Greater Trabecular Composition. Am. J. Sports Med. 2018;46:30–36. doi: 10.1177/0363546517730584.
    1. Nattiv A., Kennedy G., Barrack M.T., Abdelkerim A., Goolsby M.A., Arends J.C., Seeger L.L. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: A 5-year prospective study in collegiate track and field athletes. Am. J. Sports Med. 2013;41:1930–1941. doi: 10.1177/0363546513490645.
    1. Mudd L.M., Fornetti W., Pivarnik J.M. Bone mineral density in collegiate female athletes: Comparisons among sports. J. Athl. Train. 2007;42:403–408.
    1. McAleer S.S., Lippie E., Norman D., Riepenhof H. Nonoperative Management, Rehabilitation, and Functional and Clinical Progression of Osteitis Pubis/Pubic Bone Stress in Professional Soccer Players: A Case Series. J. Orthop. Sports Phys. Ther. 2017;47:683–690. doi: 10.2519/jospt.2017.7314.
    1. Maffulli N., Longo G.U., Denaro V. Femoral Neck Stress Fractures. Oper. Tech. Sports Med. 2009;17:90–93. doi: 10.1053/j.otsm.2009.06.001.
    1. Haase S.C. Management of Upper Extremity Injury in Divers. Hand Clin. 2017;33:73–80. doi: 10.1016/j.hcl.2016.08.017.
    1. Balius R., Pedret C., Estruch A., Hernández G., Ruiz-Cotorro A., Mota J. Stress fractures of the metacarpal bones in adolescent tennis players: A case series. Am. J. Sports Med. 2010;38:1215–1220. doi: 10.1177/0363546509358322.
    1. Kohyama S., Kanamori A., Tanaka T., Hara Y., Yamazaki M. Stress fracture of the scaphoid in an elite junior tennis player: A case report and review of the literature. J. Med. Case Rep. 2016;10:8. doi: 10.1186/s13256-015-0785-3.
    1. Caine D., DiFiori J., Maffulli N. Physeal injuries in children’s and youth sports: Reasons for concern? Br. J. Sports Med. 2006;40:749–760. doi: 10.1136/bjsm.2005.017822.
    1. Feeley B.T., Agel J., LaPrade R.F. When Is It Too Early for Single Sport Specialization? Am. J. Sports Med. 2016;44:234–241. doi: 10.1177/0363546515576899.
    1. Baker S., Seales J., Newcomer S., Bruce J. A Case Report: Bilateral Patella Stress Fractures in a Collegiate Gymnast. J. Orthop. Case Rep. 2018;8:45–48. doi: 10.13107/jocr.2250-0685.1154.
    1. Orava S., Taimela S., Kvist M., Karpakka J., Hulkko A., Kujala U. Diagnosis and treatment of stress fracture of the patella in athletes. Knee Surg. Sports Traumatol. Arthrosc. 1996;4:206–211. doi: 10.1007/BF01567964.
    1. Fredericson M., Ngo J., Cobb K. Effects of ball sports on future risk of stress fracture in runners. Clin. J. Sport Med. 2005;15:136–141. doi: 10.1097/01.jsm.0000165489.68997.60.
    1. DiStefano L.J., Dann C.L., Chang C.J., Putukian M., Pierpoint L.A., Currie D.W., Knowles S.B., Wasserman E.B., Dompier T.P., Comstock R.D., et al. The First Decade of Web-Based Sports Injury Surveillance: Descriptive Epidemiology of Injuries in US High School Girls’ Soccer (2005–2006 Through 2013–2014) and National Collegiate Athletic Association Women’s Soccer (2004–2005 Through 2013–2014) J. Athl. Train. 2018;53:880–892. doi: 10.4085/1062-6050-156-17.
    1. Myer G.D., Jayanthi N., DiFiori J.P., Faigenbaum A.D., Kiefer A.W., Logerstedt D., Micheli L.J. Sports Specialization, Part II: Alternative Solutions to Early Sport Specialization in Youth Athletes. Sports Health. 2016;8:65–73. doi: 10.1177/1941738115614811.
    1. Beck B.R., Rudolph K., Matheson G.O., Bergman A.G., Norling T.L. Risk factors for tibial stress injuries: A case-control study. Clin. J. Sport Med. 2015;25:230–236. doi: 10.1097/JSM.0000000000000126.
    1. Barrack M.T., Fredericson M., Tenforde A.S., Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br. J. Sports Med. 2017;51:200–205. doi: 10.1136/bjsports-2016-096698.
    1. Aicale R., Tarantino D., Maffulli N. Overuse injuries in sport: A comprehensive overview. J. Orthop. Surg. Res. 2018;13:309. doi: 10.1186/s13018-018-1017-5.
    1. Barrack M.T., Gibbs J.C., De Souza M.J., Williams N.I., Nichols J.F., Rauh M.J., Nattiv A. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: A prospective multisite study of exercising girls and women. Am. J. Sports Med. 2014;42:949–958. doi: 10.1177/0363546513520295.
    1. Malisoux L., Frisch A., Urhausen A., Seil R., Theisen D. Monitoring of sport participation and injury risk in young athletes. J. Sci. Med. Sport. 2013;16:504–508. doi: 10.1016/j.jsams.2013.01.008.
    1. Loud K.J., Gordon C.M., Micheli L.J., Field A.E. Correlates of stress fractures among preadolescent and adolescent girls. Pediatrics. 2005;115:e399–e406. doi: 10.1542/peds.2004-1868.
    1. Sonneville K.R., Gordon C.M., Kocher M.S., Pierce L.M., Ramappa A., Field A.E. Vitamin d, calcium, and dairy intakes and stress fractures among female adolescents. Arch. Pediatr. Adolesc. Med. 2012;166:595–600. doi: 10.1001/archpediatrics.2012.5.
    1. Kadel N.J., Teitz C.C., Kronmal R.A. Stress fractures in ballet dancers. Am. J. Sports Med. 1992;20:445–449. doi: 10.1177/036354659202000414.
    1. Pasulka J., Jayanthi N., McCann A., Dugas L.R., LaBella C. Specialization patterns across various youth sports and relationship to injury risk. Phys. Sportsmed. 2017;45:344–352. doi: 10.1080/00913847.2017.1313077.
    1. Tenforde A.S., Sainani K.L., Carter Sayres L., Milgrom C., Fredericson M. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes. PM&R. 2015;7:222–225. doi: 10.1016/j.pmrj.2014.09.017.
    1. Duckham R.L., Bialo S.R., Machan J., Kriz P., Gordon C.M. A case-control pilot study of stress fracture in adolescent girls: The discriminative ability of two imaging technologies to classify at-risk athletes. Osteoporos. Int. 2019;30:1573–1580. doi: 10.1007/s00198-019-05001-x.
    1. Nussbaum E.D., Bjornaraa J., Gatt C.J. Identifying Factors That Contribute to Adolescent Bony Stress Injury in Secondary School Athletes: A Comparative Analysis With a Healthy Athletic Control Group. Sports Health. 2019;11:1941738118824293. doi: 10.1177/1941738118824293.
    1. Abbott A., Bird M.L., Wild E., Brown S.M., Stewart G., Mulcahey M.K. Part I: Epidemiology and Risk Factors for Stress Fractures in Female Athletes. Phys. Sportsmed. 2019;48:17–24. doi: 10.1080/00913847.2019.1632158.
    1. De Souza M.J., Nattiv A., Joy E., Misra M., Williams N.I., Mallinson R.J., Gibbs J.C., Olmsted M., Goolsby M., Matheson G., et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin. J. Sport Med. 2014;24:96–119. doi: 10.1097/JSM.0000000000000085.
    1. Ackerman K.E., Cano Sokoloff N., DE Nardo Maffazioli G., Clarke H.M., Lee H., Misra M. Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes. Med. Sci. Sports Exerc. 2015;47:1577–1586. doi: 10.1249/MSS.0000000000000574.
    1. Guest N.S., Barr S.I. Cognitive dietary restraint is associated with stress fractures in women runners. Int. J. Sport Nutr. Exerc. Metab. 2005;15:147–159. doi: 10.1123/ijsnem.15.2.147.
    1. Tornberg Å., Melin A., Koivula F.M., Johansson A., Skouby S., Faber J., Sjödin A. Reduced Neuromuscular Performance in Amenorrheic Elite Endurance Athletes. Med. Sci. Sports Exerc. 2017;49:2478–2485. doi: 10.1249/MSS.0000000000001383.
    1. Iuliano-Burns S., Mirwald R.L., Bailey D.A. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am. J. Hum. Biol. 2001;13:1–8. doi: 10.1002/1520-6300(200101/02)13:1<1::AID-AJHB1000>;2-S.
    1. Stracciolini A., Quinn B.J., Geminiani E., Kinney S., McCrystal T., Owen M., Pepin M.J., Stein C.J. Body Mass Index and Menstrual Patterns in Dancers. Clin. Pediatr. 2017;56:49–54. doi: 10.1177/0009922816642202.
    1. Harel Z., Gold M., Cromer B., Bruner A., Stager M., Bachrach L., Wolter K., Reid C., Hertweck P., Nelson A., et al. Bone mineral density in postmenarchal adolescent girls in the United States: Associated biopsychosocial variables and bone turnover markers. J. Adolesc. Health. 2007;40:44–53. doi: 10.1016/j.jadohealth.2006.08.013.
    1. Nattiv A., Loucks A.B., Manore M.M., Sanborn C.F., Sundgot-Borgen J., Warren M.P., Medicine A.C.o.S. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007;39:1867–1882. doi: 10.1249/mss.0b013e318149f111.
    1. Mountjoy M., Sundgot-Borgen J., Burke L., Ackerman K.E., Blauwet C., Constantini N., Lebrun C., Lundy B., Melin A., Meyer N., et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018;28:316–331. doi: 10.1123/ijsnem.2018-0136.
    1. Elliott-Sale K.J., Tenforde A.S., Parziale A.L., Holtzman B., Ackerman K.E. Endocrine Effects of Relative Energy Deficiency in Sport. Int. J. Sport Nutr. Exerc. Metab. 2018;28:335–349. doi: 10.1123/ijsnem.2018-0127.
    1. Jurov I., Keay N., Hadžić V., Spudić D., Rauter S. Relationship between energy availability, energy conservation and cognitive restraint with performance measures in male endurance athletes. J. Int. Soc. Sports Nutr. 2021;18:24. doi: 10.1186/s12970-021-00419-3.
    1. Melin A., Tornberg A.B., Skouby S., Faber J., Ritz C., Sjödin A., Sundgot-Borgen J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014;48:540–545. doi: 10.1136/bjsports-2013-093240.
    1. Tenforde A.S., Barrack M.T., Nattiv A., Fredericson M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med. 2016;46:171–182. doi: 10.1007/s40279-015-0411-y.
    1. Kraus E., Tenforde A.S., Nattiv A., Sainani K.L., Kussman A., Deakins-Roche M., Singh S., Kim B.Y., Barrack M.T., Fredericson M. Bone stress injuries in male distance runners: Higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 2019;53:237–242. doi: 10.1136/bjsports-2018-099861.
    1. Torstveit M.K., Fahrenholtz I.L., Lichtenstein M.B., Stenqvist T.B., Melin A.K. Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019;5:e000439. doi: 10.1136/bmjsem-2018-000439.
    1. Logue D.M., Madigan S.M., Melin A., Delahunt E., Heinen M., Donnell S.M., Corish C.A. Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients. 2020;12:835. doi: 10.3390/nu12030835.
    1. Keay N., Overseas A., Francis G. Indicators and correlates of low energy availability in male and female dancers. BMJ Open Sports Exerc. Med. 2020;6:e000906. doi: 10.1136/bmjsem-2020-000906.
    1. Keay N., Francis G., Hind K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc. Med. 2018;4:e000424. doi: 10.1136/bmjsem-2018-000424.
    1. Burgi A.A., Gorham E.D., Garland C.F., Mohr S.B., Garland F.C., Zeng K., Thompson K., Lappe J.M. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J. Bone Miner. Res. 2011;26:2371–2377. doi: 10.1002/jbmr.451.
    1. Lappe J., Cullen D., Haynatzki G., Recker R., Ahlf R., Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. 2008;23:741–749. doi: 10.1359/jbmr.080102.
    1. Gaffney-Stomberg E., Nakayama A.T., Guerriere K.I., Lutz L.J., Walker L.A., Staab J.S., Scott J.M., Gasier H.G., McClung J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone. 2019;123:224–233. doi: 10.1016/j.bone.2019.03.021.
    1. Merrilees M.J., Smart E.J., Gilchrist N.L., Frampton C., Turner J.G., Hooke E., March R.L., Maguire P. Effects of diary food supplements on bone mineral density in teenage girls. Eur. J. Nutr. 2000;39:256–262. doi: 10.1007/s003940070004.
    1. Joy E., Kussman A., Nattiv A. 2016 update on eating disorders in athletes: A comprehensive narrative review with a focus on clinical assessment and management. Br. J. Sports Med. 2016;50:154–162. doi: 10.1136/bjsports-2015-095735.
    1. Kandemir N., Slattery M., Ackerman K.E., Tulsiani S., Bose A., Singhal V., Baskaran C., Ebrahimi S., Goldstein M., Eddy K., et al. Bone Parameters in Anorexia Nervosa and Athletic Amenorrhea: Comparison of Two Hypothalamic Amenorrhea States. J. Clin. Endocrinol. Metab. 2018;103:2392–2402. doi: 10.1210/jc.2018-00338.
    1. Misra M. Long-term skeletal effects of eating disorders with onset in adolescence. Ann. N. Y. Acad. Sci. 2008;1135:212–218. doi: 10.1196/annals.1429.002.
    1. Arora T., Broglia E., Thomas G.N., Taheri S. Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias. Sleep Med. 2014;15:240–247. doi: 10.1016/j.sleep.2013.08.799.
    1. Von Rosen P., Olofsson O., Väsbom S., Heijne A. Correlates of health in adolescent elite athletes and adolescents: A cross-sectional study of 1016 adolescents. Eur. J. Sport Sci. 2019;19:707–716. doi: 10.1080/17461391.2018.1552721.
    1. Milewski M.D., Skaggs D.L., Bishop G.A., Pace J.L., Ibrahim D.A., Wren T.A., Barzdukas A. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. J. Pediatr. Orthop. 2014;34:129–133. doi: 10.1097/BPO.0000000000000151.
    1. Finestone A., Milgrom C. How stress fracture incidence was lowered in the Israeli army: A 25-yr struggle. Med. Sci. Sports Exerc. 2008;40:S623–S629. doi: 10.1249/MSS.0b013e3181892dc2.
    1. Bennell K., Brukner P. Preventing and managing stress fractures in athletes. Phys. Ther. Sport. 2005;6:169–210. doi: 10.1016/j.ptsp.2005.07.002.
    1. Boyce A.M., Gafni R.I. Approach to the child with fractures. J. Clin. Endocrinol. Metab. 2011;96:1943–1952. doi: 10.1210/jc.2010-2546.
    1. Hopp R.J., Degan J.A., Biven R.E., Kinberg K., Gallagher G.C. Longitudinal assessment of bone mineral density in children with chronic asthma. Ann. Allergy Asthma Immunol. 1995;75:143–148.
    1. Bahceciler N.N., Sezgin G., Nursoy M.A., Barlan I.B., Basaran M.M. Inhaled corticosteroids and bone density of children with asthma. J. Asthma. 2002;39:151–157. doi: 10.1081/JAS-120002196.
    1. Allen D.B. Effects of inhaled steroids on growth, bone metabolism, and adrenal function. Adv. Pediatr. 2006;53:101–110. doi: 10.1016/j.yapd.2006.04.006.
    1. Zieck S.E., George J., Blakeley B.A., Welsh L., James S., Ranganathan S., Simm P., Lim A. Asthma, bones and corticosteroids: Are inhaled corticosteroids associated with fractures in children with asthma? J. Paediatr. Child. Health. 2017;53:771–777. doi: 10.1111/jpc.13554.
    1. Roux C., Kolta S., Desfougères J.L., Minini P., Bidat E. Long-term safety of fluticasone propionate and nedocromil sodium on bone in children with asthma. Pediatrics. 2003;111:e706–e713. doi: 10.1542/peds.111.6.e706.
    1. Hoover K.B., Miller C.G., Galante N.C., Langman C.B. A double-blind, randomized, Phase III, multicenter study in 358 pediatric subjects receiving isotretinoin therapy demonstrates no effect on pediatric bone mineral density. Osteoporos. Int. 2015;26:2441–2447. doi: 10.1007/s00198-015-3158-2.
    1. Costa C.S., Bagatin E., Martimbianco A.L.C., da Silva E.M., Lúcio M.M., Magin P., Riera R. Oral isotretinoin for acne. Cochrane Database Syst. Rev. 2018;11:CD009435. doi: 10.1002/14651858.CD009435.pub2.
    1. Gersten J., Hsieh J., Weiss H., Ricciotti N.A. Effect of Extended 30 μg Ethinyl Estradiol with Continuous Low-Dose Ethinyl Estradiol and Cyclic 20 μg Ethinyl Estradiol Oral Contraception on Adolescent Bone Density: A Randomized Trial. J. Pediatr. Adolesc. Gynecol. 2016;29:635–642. doi: 10.1016/j.jpag.2016.05.012.
    1. Wren T.A., Shepherd J.A., Kalkwarf H.J., Zemel B.S., Lappe J.M., Oberfield S., Dorey F.J., Winer K.K., Gilsanz V. Racial disparity in fracture risk between white and nonwhite children in the United States. J. Pediatr. 2012;161:1035–1040. doi: 10.1016/j.jpeds.2012.07.054.
    1. Waterman B.R., Gun B., Bader J.O., Orr J.D., Belmont P.J. Epidemiology of Lower Extremity Stress Fractures in the United States Military. Mil. Med. 2016;181:1308–1313. doi: 10.7205/MILMED-D-15-00571.
    1. Yanovich R., Evans R.K., Friedman E., Moran D.S. Bone turnover markers do not predict stress fracture in elite combat recruits. Clin. Orthop. Relat. Res. 2013;471:1365–1372. doi: 10.1007/s11999-012-2727-3.
    1. Zhao L., Chang Q., Huang T., Huang C. Prospective cohort study of the risk factors for stress fractures in Chinese male infantry recruits. J. Int. Med. Res. 2016;44:787–795. doi: 10.1177/0300060516639751.
    1. Välimäki V.V., Alfthan H., Lehmuskallio E., Löyttyniemi E., Sahi T., Suominen H., Välimäki M.J. Risk factors for clinical stress fractures in male military recruits: A prospective cohort study. Bone. 2005;37:267–273. doi: 10.1016/j.bone.2005.04.016.
    1. Bennell K.L., Malcolm S.A., Brukner P.D., Green R.M., Hopper J.L., Wark J.D., Ebeling P.R. A 12-month prospective study of the relationship between stress fractures and bone turnover in athletes. Calcif. Tissue Int. 1998;63:80–85. doi: 10.1007/s002239900493.
    1. Russek L.N., Errico D.M. Prevalence, injury rate and, symptom frequency in generalized joint laxity and joint hypermobility syndrome in a “healthy” college population. Clin. Rheumatol. 2016;35:1029–1039. doi: 10.1007/s10067-015-2951-9.
    1. Kaneko H., Murakami M., Nishizawa K. Prevalence and clinical features of sports-related lumbosacral stress injuries in the young. Arch. Orthop. Trauma Surg. 2017;137:685–691. doi: 10.1007/s00402-017-2686-y.
    1. Johnson A.W., Weiss C.B., Wheeler D.L. Stress fractures of the femoral shaft in athletes—More common than expected. A new clinical test. Am. J. Sports Med. 1994;22:248–256. doi: 10.1177/036354659402200216.
    1. Sailhan F., Courvoisier A., Brunet O., Chotel F., Berard J. Continued growth of the hip after fixation of slipped capital femoral epiphysis using a single cannulated screw with a proximal threading. J. Child. Orthop. 2011;5:83–88. doi: 10.1007/s11832-010-0324-0.
    1. Dobrindt O., Hoffmeyer B., Ruf J., Seidensticker M., Steffen I.G., Fischbach F., Zarva A., Wieners G., Ulrich G., Lohmann C.H., et al. Estimation of return-to-sports-time for athletes with stress fracture—An approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet. Disord. 2012;13:139. doi: 10.1186/1471-2474-13-139.
    1. Gaeta M., Minutoli F., Scribano E., Ascenti G., Vinci S., Bruschetta D., Magaudda L., Blandino A. CT and MR imaging findings in athletes with early tibial stress injuries: Comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235:553–561. doi: 10.1148/radiol.2352040406.
    1. Kountouris A., Sims K., Beakley D., Saw A.E., Orchard J., Rotstein A., Cook J.L. MRI bone marrow oedema precedes lumbar bone stress injury diagnosis in junior elite cricket fast bowlers. Br. J. Sports Med. 2018;53:1236–1239. doi: 10.1136/bjsports-2017-097930.
    1. Dobrindt O., Hoffmeyer B., Ruf J., Seidensticker M., Steffen I.G., Zarva A., Fischbach F., Wieners G., Furth C., Lohmann C.H., et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin. 2012;51:88–94. doi: 10.3413/Nukmed-0448-11-12.
    1. Bryant L.R., Song W.S., Banks K.P., Bui-Mansfield L.T., Bradley Y.C. Comparison of planar scintigraphy alone and with SPECT for the initial evaluation of femoral neck stress fracture. AJR Am. J. Roentgenol. 2008;191:1010–1015. doi: 10.2214/AJR.07.3592.
    1. Zwas S.T., Elkanovitch R., Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures. J. Nucl. Med. 1987;28:452–457.
    1. Savoca C.J. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100:519–524. doi: 10.1148/100.3.519.
    1. Schneiders A.G., Sullivan S.J., Hendrick P.A., Hones B.D., McMaster A.R., Sugden B.A., Tomlinson C. The ability of clinical tests to diagnose stress fractures: A systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 2012;42:760–771. doi: 10.2519/jospt.2012.4000.
    1. Beck B. Can therapeutic ultrasound accurately detect bone stress injuries in athletes? Clin. J. Sport Med. 2013;23:241–242. doi: 10.1097/JSM.0b013e3182926bda.
    1. Fukushima Y., Ray J., Kraus E., Syrop I.P., Fredericson M. A Review and Proposed Rationale for the use of Ultrasonography as a Diagnostic Modality in the Identification of Bone Stress Injuries. J. Ultrasound Med. 2018;37:2297–2307. doi: 10.1002/jum.14588.
    1. Tsukada M., Takiuchi T., Watanabe K. Low-Intensity Pulsed Ultrasound for Early-Stage Lumbar Spondylolysis in Young Athletes. Clin. J. Sport Med. 2019;29:262–266. doi: 10.1097/JSM.0000000000000531.
    1. Anderson K., Sarwark J.F., Conway J.J., Logue E.S., Schafer M.F. Quantitative assessment with SPECT imaging of stress injuries of the pars interarticularis and response to bracing. J. Pediatr. Orthop. 2000;20:28–33. doi: 10.1097/01241398-200001000-00007.
    1. Kaeding C.C., Miller T. The comprehensive description of stress fractures: A new classification system. J. Bone Jt. Surg. Am. 2013;95:1214–1220. doi: 10.2106/JBJS.L.00890.
    1. Leone A., Cianfoni A., Cerase A., Magarelli N., Bonomo L. Lumbar spondylolysis: A review. Skelet. Radiol. 2011;40:683–700. doi: 10.1007/s00256-010-0942-0.
    1. Brukner P., Bennell K. Stress fractures in female athletes. Diagnosis, management and rehabilitation. Sports Med. 1997;24:419–429. doi: 10.2165/00007256-199724060-00006.
    1. Tenforde A.S., Watanabe L.M., Moreno T.J., Fredericson M. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury. PM&R. 2012;4:629–631. doi: 10.1016/j.pmrj.2012.02.003.
    1. Schandelmaier S., Kaushal A., Lytvyn L., Heels-Ansdell D., Siemieniuk R.A., Agoritsas T., Guyatt G.H., Vandvik P.O., Couban R., Mollon B., et al. Low intensity pulsed ultrasound for bone healing: Systematic review of randomized controlled trials. BMJ. 2017;356:j656. doi: 10.1136/bmj.j656.
    1. Gan T.Y., Kuah D.E., Graham K.S., Markson G. Low-intensity pulsed ultrasound in lower limb bone stress injuries: A randomized controlled trial. Clin. J. Sport Med. 2014;24:457–460. doi: 10.1097/JSM.0000000000000084.
    1. Beck B.R., Matheson G.O., Bergman G., Norling T., Fredericson M., Hoffman A.R., Marcus R. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am. J. Sports Med. 2008;36:545–553. doi: 10.1177/0363546507310076.
    1. Griffith T.B., Kercher J., Clifton Willimon S., Perkins C., Duralde X.A. Elbow Injuries in the Adolescent Thrower. Curr. Rev. Musculoskelet. Med. 2018;11:35–47. doi: 10.1007/s12178-018-9457-4.
    1. Von Rosen P., Kottorp A., Fridén C., Frohm A., Heijne A. Young, talented and injured: Injury perceptions, experiences and consequences in adolescent elite athletes. Eur. J. Sport Sci. 2018;18:731–740. doi: 10.1080/17461391.2018.1440009.
    1. Williams N.I., Mallinson R.J., De Souza M.J. Rationale and study design of an intervention of increased energy intake in women with exercise-associated menstrual disturbances to improve menstrual function and bone health: The REFUEL study. Contemp. Clin. Trials Commun. 2019;14:100325. doi: 10.1016/j.conctc.2019.100325.
    1. Hind K., Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone. 2007;40:14–27. doi: 10.1016/j.bone.2006.07.006.
    1. Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002;34:689–694.
    1. Weeks B.K., Beck B.R. The Relationship between Physical Activity and Bone during Adolescence Differs according to Sex and Biological Maturity. J. Osteoporos. 2010;2010:546593. doi: 10.4061/2010/546593.
    1. Rantalainen T., Weeks B.K., Nogueira R.C., Beck B.R. Effects of bone-specific physical activity, gender and maturity on tibial cross-sectional bone material distribution: A cross-sectional pQCT comparison of children and young adults aged 5–29 years. Bone. 2015;72:101–108. doi: 10.1016/j.bone.2014.11.015.
    1. Rantalainen T., Weeks B.K., Nogueira R.C., Beck B.R. Long bone robustness during growth: A cross-sectional pQCT examination of children and young adults aged 5–29 years. Bone. 2016;93:71–78. doi: 10.1016/j.bone.2016.09.015.
    1. Beck B.R. Exercise for Bone in Childhood-Hitting the Sweet Spot. Pediatr. Exerc. Sci. 2017;29:440–449. doi: 10.1123/pes.2017-0023.
    1. Foster C., Florhaug J.A., Franklin J., Gottschall L., Hrovatin L.A., Parker S., Doleshal P., Dodge C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001;15:109–115.
    1. Boström A., Thulin K., Fredriksson M., Reese D., Rockborn P., Hammar M.L. Risk factors for acute and overuse sport injuries in Swedish children 11 to 15 years old: What about resistance training with weights? Scand. J. Med. Sci. Sports. 2016;26:317–323. doi: 10.1111/sms.12432.
    1. Lloyd R.S., Faigenbaum A.D., Stone M.H., Oliver J.L., Jeffreys I., Moody J.A., Brewer C., Pierce K.C., McCambridge T.M., Howard R., et al. Position statement on youth resistance training: The 2014 International Consensus. Br. J. Sports Med. 2014;48:498–505. doi: 10.1136/bjsports-2013-092952.
    1. Nogueira R.C., Weeks B.K., Beck B.R. Exercise to improve pediatric bone and fat: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2014;46:610–621. doi: 10.1249/MSS.0b013e3182a6ab0d.
    1. Fuchs R.K., Bauer J.J., Snow C.M. Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. J. Bone Miner. Res. 2001;16:148–156. doi: 10.1359/jbmr.2001.16.1.148.
    1. Weeks B.K., Young C.M., Beck B.R. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and Girls: The POWER PE study. J. Bone Miner. Res. 2008;23:1002–1011. doi: 10.1359/jbmr.080226.
    1. Blimkie C.J., Rice S., Webber C.E., Martin J., Levy D., Gordon C.L. Effects of resistance training on bone mineral content and density in adolescent females. Can. J. Physiol. Pharm. 1996;74:1025–1033. doi: 10.1139/y96-099.
    1. Witzke K.A., Snow C.M. Effects of plyometric jump training on bone mass in adolescent girls. Med. Sci. Sports Exerc. 2000;32:1051–1057. doi: 10.1097/00005768-200006000-00003.
    1. Nichols D.L., Sanborn C.F., Love A.M. Resistance training and bone mineral density in adolescent females. J. Pediatr. 2001;139:494–500. doi: 10.1067/mpd.2001.116698.
    1. Vlachopoulos D. The impact of different loading sports and a jumping intervention on bone health in adolescent males: The PRO-BONE study. Br. J. Sports Med. 2018;53:1255–1256. doi: 10.1136/bjsports-2018-099767.
    1. Dowthwaite J.N., Weiss D.M., Thein-Nissenbaum J., Scerpella T.A. A 2-yr, School-Based Resistance Exercise Pilot Program Increases Bone Accrual in Adolescent Girls. Transl. J. Am. Coll. Sports Med. 2019;4:74–83.
    1. Meyer U., Romann M., Zahner L., Schindler C., Puder J.J., Kraenzlin M., Rizzoli R., Kriemler S. Effect of a general school-based physical activity intervention on bone mineral content and density: A cluster-randomized controlled trial. Bone. 2011;48:792–797. doi: 10.1016/j.bone.2010.11.018.
    1. Nogueira R.C., Weeks B.K., Beck B.R. An in-school exercise intervention to enhance bone and reduce fat in girls: The CAPO Kids trial. Bone. 2014;68:92–99. doi: 10.1016/j.bone.2014.08.006.
    1. Nogueira R.C., Weeks B.K., Beck B. One-Year Follow-up of the CAPO Kids Trial: Are Physical Benefits Maintained? Pediatr. Exerc. Sci. 2017;29:486–495. doi: 10.1123/pes.2017-0044.
    1. Lauersen J.B., Andersen T.E., Andersen L.B. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: A systematic review, qualitative analysis and meta-analysis. Br. J. Sports Med. 2018;52:1557–1563. doi: 10.1136/bjsports-2018-099078.
    1. Wulff Helge E., Melin A., Waaddegaard M., Kanstrup I.L. BMD in elite female triathletes is related to isokinetic peak torque without any association to sex hormone concentrations. J. Sports Med. Phys. Fit. 2012;52:489–500.
    1. Keay N., Francis G., Entwistle I., Hind K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-month randomised controlled trial. BMJ Open Sport Exerc. Med. 2019;5:e000523. doi: 10.1136/bmjsem-2019-000523.
    1. Ackerman K.E., Holtzman B., Cooper K.M., Flynn E.F., Bruinvels G., Tenforde A.S., Popp K.L., Simpkin A.J., Parziale A.L. Low energy availability surrogates correlate with health and performance consequences of Relative Energy Deficiency in Sport. Br. J. Sports Med. 2018;53:628–633. doi: 10.1136/bjsports-2017-098958.
    1. Rogers M.A., Appaneal R.N., Hughes D., Vlahovich N., Waddington G., Burke L.M., Drew M. Prevalence of impaired physiological function consistent with Relative Energy Deficiency in Sport (RED-S): An Australian elite and pre-elite cohort. Br. J. Sports Med. 2020;55:38–45. doi: 10.1136/bjsports-2019-101517.
    1. Kroshus E., DeFreese J.D., Kerr Z.Y. Collegiate Athletic Trainers’ Knowledge of the Female Athlete Triad and Relative Energy Deficiency in Sport. J. Athl. Train. 2018;53:51–59. doi: 10.4085/1062-6050-52.11.29.
    1. Neal S., Sykes J., Rigby M., Hess B. A review and clinical summary of vitamin D in regard to bone health and athletic performance. Phys. Sportsmed. 2015;43:161–168. doi: 10.1080/00913847.2015.1020248.
    1. Ross A.C., Manson J.E., Abrams S.A., Aloia J.F., Brannon P.M., Clinton S.K., Durazo-Arvizu R.A., Gallagher J.C., Gallo R.L., Jones G., et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011;96:53–58. doi: 10.1210/jc.2010-2704.
    1. Harvey J.A., Zobitz M.M., Pak C.Y. Dose dependency of calcium absorption: A comparison of calcium carbonate and calcium citrate. J. Bone Miner. Res. 1988;3:253–258. doi: 10.1002/jbmr.5650030303.
    1. McDonnell L.K., Hume P.A., Nolte V. Rib stress fractures among rowers: Definition, epidemiology, mechanisms, risk factors and effectiveness of injury prevention strategies. Sports Med. 2011;41:883–901. doi: 10.2165/11593170-000000000-00000.
    1. Warden S.J., Davis I.S., Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J. Orthop. Sports Phys. Ther. 2014;44:749–765. doi: 10.2519/jospt.2014.5334.
    1. Ackerman K.E., Singhal V., Baskaran C., Slattery M., Campoverde Reyes K.J., Toth A., Eddy K.T., Bouxsein M.L., Lee H., Klibanski A., et al. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: A randomised clinical trial. Br. J. Sports Med. 2019;53:229–236. doi: 10.1136/bjsports-2018-099723.
    1. Singhal V., Ackerman K.E., Bose A., Torre Flores L.P., Lee H., Misra M. Impact of Route of Estrogen Administration on Bone Turnover Markers in Oligoamenorrheic Athletes and its Mediators. J. Clin. Endocrinol. Metab. 2018;104:1449–1458. doi: 10.1210/jc.2018-02143.
    1. Altayar O., Al Nofal A., Carranza Leon B.G., Prokop L.J., Wang Z., Murad M.H. Treatments to Prevent Bone Loss in Functional Hypothalamic Amenorrhea: A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2017;1:500–511. doi: 10.1210/js.2017-00102.
    1. Dadgostar H., Soleimany G., Movaseghi S., Dadgostar E., Lotfian S. The effect of hormone therapy on bone mineral density and cardiovascular factors among Iranian female athletes with amenorrhea/oligomenorrhea: A randomized clinical trial. Med. J. Islam. Repub. Iran. 2018;32:27. doi: 10.14196/mjiri.32.27.
    1. Rizzo A.D.C.B., Goldberg T.B.L., Biason T.P., Kurokawa C.S., Silva C.C.D., Corrente J.E., Nunes H.R.C. One-year adolescent bone mineral density and bone formation marker changes through the use or lack of use of combined hormonal contraceptives. J. Pediatr. 2018;95:567–574. doi: 10.1016/j.jped.2018.05.011.
    1. Sokal A., Elefant E., Leturcq T., Beghin D., Mariette X., Seror R. Pregnancy and newborn outcomes after exposure to bisphosphonates: A case-control study. Osteoporos. Int. 2019;30:221–229. doi: 10.1007/s00198-018-4672-9.
    1. Milgrom C., Finestone A., Novack V., Pereg D., Goldich Y., Kreiss Y., Zimlichman E., Kaufman S., Liebergall M., Burr D. The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone. 2004;35:418–424. doi: 10.1016/j.bone.2004.04.016.
    1. Al-Moamary M.S., Alhaider S.A., Alangari A.A., Al Ghobain M.O., Zeitouni M.O., Idrees M.M., Alanazi A.F., Al-Harbi A.S., Yousef A.A., Alorainy H.S., et al. The Saudi Initiative for Asthma—2019 Update: Guidelines for the diagnosis and management of asthma in adults and children. Ann. Thorac. Med. 2019;14:3–48. doi: 10.4103/atm.ATM_327_18.

Source: PubMed

3
Abonner