Apoptosis in cancer: from pathogenesis to treatment

Rebecca S Y Wong, Rebecca S Y Wong

Abstract

Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.

Figures

Figure 1
Figure 1
The intrinsic and extrinsic pathways of apoptosis.
Figure 2
Figure 2
Mechanisms contributing to evasion of apoptosis and carcinogenesis.

References

    1. Bauer JH, Hefand SL. New tricks of an old molecule: lifespan regulation by p53. Aging Cell. 2006;5:437–440. doi: 10.1111/j.1474-9726.2006.00228.x.
    1. Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res. 2002;4:70–76.
    1. Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, Lane DP. p53 mutations in colorectal cancers. Proc Natl Acad Sci USA. 1990;87(19):7555–7559. doi: 10.1073/pnas.87.19.7555.
    1. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, Jamieson NB, Oien KA, Lowy AM, Brunton VG, Frame MC, Jeffry Evans TR, Sansom OJ. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. PNAS. 2010;107(1):246–251. doi: 10.1073/pnas.0908428107.
    1. Jensen M, Engert A, Weissinger F, Knauf W, Kimby E, Poynton C, Oliff IA, Rummel MJ, Österborg A. Phase I study of a novel pro-apoptotic drug R-etodolac in patients with B-cell chronic lymphocytic leukaemia. Invest New Drugs. 2008;26(2):139–149. doi: 10.1007/s10637-007-9106-z.
    1. Baritaki S, Militello L, Malaponte G, Spandidos DA, Salcedo M, Bonavida B. The anti-CD20 mAb LFB-R603 interrupts the dysregulated NF-κB/Snail/RKIP/PTEN resistance loop in B-NHL cells: role in sensitization to TRAIL apoptosis. Int J Oncol. 2011;38(6):1683–1694.
    1. Kerr JF, Harmon BV. In: Apoptosis: the molecular basis of cell death. Tomei LD, Cope FO, editor. Vol. 3. New York: Cold Spring Harbor Laboratory Press; 1991. Definition and incidence of apoptosis: an historical perspective; pp. 5–29.
    1. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–257. doi: 10.1038/bjc.1972.33.
    1. Mohan H. Textbook of pathology. 5. New Delhi: Jaypee Brothers Medical Publishers; 2010. pp. 21–60.
    1. Merkle CJ. In: Pathophysiology: concepts of altered health states. 8. Porth CM, Matfin G, editor. Philadelphia: Wolters Kluwer/Lippincott Williams and Wilkins; 2009. Cellular adaptation, injury, and death; pp. 94–111.
    1. Hacker G. The morphology of apoptosis. Cell Tissue Res. 2000;301:5–17. doi: 10.1007/s004410000193.
    1. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Res. 2000;45:528–537. doi: 10.1016/S0008-6363(99)00384-3.
    1. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci. 2004;19:124–128. doi: 10.1152/nips.01519.2004.
    1. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2005;12:1463–1467.
    1. Manjo G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.
    1. Kumar V, Abbas AK, Fausto N, Aster JC. Robins and Cotran: pathologic basis of disease. 8. Philadelphia: Saunders Elsevier; 2010. pp. 25–32.
    1. Hengartner MO. Apoptosis: corralling the corpses. Cell. 2000;104:325–328.
    1. Vaux D, Silke J. Mammalian mitochondrial IAP-binding proteins. Biochem Biophy Res Commun. 2003;203:449–504.
    1. McCarthy NJ, Evan GI. Methods for detecting and quantifying apoptosis. Curr Top Dev Biol. 1998;36:259–278.
    1. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115:2665–2672. doi: 10.1172/JCI26252.
    1. Galluzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–1266. doi: 10.1038/sj.cdd.4402148.
    1. O'Brien MA, Kirby R. Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care. 2008;18(6):572–585. doi: 10.1111/j.1476-4431.2008.00363.x.
    1. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000;74:281–286. doi: 10.1016/S0031-6865(99)00038-2.
    1. Karp G. Cell and molecular biology: Concepts and experiments. 5. John New Jersey: Wiley and Sons; 2008. pp. 653–657.
    1. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–219. doi: 10.1016/S0092-8674(04)00046-7.
    1. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14; 18) chromosome translocation. Science. 1984;226:1097–1099. doi: 10.1126/science.6093263.
    1. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in haematologic malignancies. Semin Haematol. 1997;34:9–19.
    1. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilisation in cell death. Physiol Rev. 2007;87(1):99–163. doi: 10.1152/physrev.00013.2006.
    1. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene. 2008;27(48):6252–6275. doi: 10.1038/onc.2008.302.
    1. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–194. doi: 10.3322/canjclin.55.3.178.
    1. Szegezdi E, Fitzgerald U, Samali. Caspase-12 and ER stress mediated apoptosis: the story so far. Ann NY Acad Sci. 2003;1010:186–194. doi: 10.1196/annals.1299.032.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9.
    1. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–1911. doi: 10.1101/gad.13.15.1899.
    1. Minn AJ, Vélez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature. 1997;385(6614):353–357. doi: 10.1038/385353a0.
    1. Dewson G, Kluc RM. Bcl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton. 2010;2:9–22.
    1. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438.
    1. Fulda S, Meyer E, Debatin KM. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene. 2000;21:2283–2294.
    1. Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of Bcl-XL can confer a multidrug resistance phenotype. Blood. 1995;86:1903–1910.
    1. Miquel C, Borrini F, Grandjouan S, Aupérin A, Viguier J, Velasco V, Duvillard P, Praz F, Sabourin JC. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol. 2005;23(4):562–570.
    1. Goolsby C, Paniagua M, Tallman M, Gartenhaus RB. Bcl-2 regulatory pathway is functional in chronic lymphocytic leukaemia. Cytometry B Clin Cytom. 2005;63(1):36–46.
    1. Pepper C, Hoy T, Bentley DP. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer. 1997;76(7):935–938. doi: 10.1038/bjc.1997.487.
    1. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351(6326):453–456. doi: 10.1038/351453a0.
    1. Bai L, Zhu WG. p53: structure, function and therapeutic applications. J Cancer Mol. 2006;2(4):141–153.
    1. Oren M, Rotter V. Introduction: p53--the first twenty years. Cell Mol Life Sci. 1999;55:9–11. doi: 10.1007/s000180050265.
    1. Lane DP. p53, guardian of the genome. Nature. 1992;358:15–16. doi: 10.1038/358015a0.
    1. Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA, Talseth-Palmer BA, Rizos H, Zhang XD, Scott RJ, Hersey P. p53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer. 2011;11:203. doi: 10.1186/1471-2407-11-203.
    1. Slatter TL, Hung N, Campbell H, Rubio C, Mehta R, Renshaw P, Williams G, Wilson M, Engelmann A, Jeffs A, Royds JA, Baird MA, Braithwaite AW. Hyperproliferation, cancer, and inflammation in mice expressing a Δ133p53-like isoform. Blood. 2011;117(19):5166–5177. doi: 10.1182/blood-2010-11-321851.
    1. Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K. Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucl Acids Res. 2007;35(6):2093–2104. doi: 10.1093/nar/gkm099.
    1. Vucic D, Fairbrother WJ. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res. 2007;13(20):5995–6000. doi: 10.1158/1078-0432.CCR-07-0729.
    1. Wei Y, Fan T, Yu M. Inhibitor of apoptosis proteins and apoptosis. Acta Biochim Biophys Sin. 2008;40(4):278–288. doi: 10.1111/j.1745-7270.2008.00407.x.
    1. Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer. 2007;120(11):2344–2352. doi: 10.1002/ijc.22554.
    1. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. MLIAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000;10:1359–1366. doi: 10.1016/S0960-9822(00)00781-8.
    1. Ashhab Y, Alian A, Polliack A, Panet A, Ben Yehuda D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 2001;495:56–60. doi: 10.1016/S0014-5793(01)02366-3.
    1. Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun. 1999;264:847–854. doi: 10.1006/bbrc.1999.1585.
    1. Small S, Keerthivasan G, Huang Z, Gurbuxani S, Crispino JD. Overexpression of survivin initiates haematologic malignancies in vivo. Leukaemia. 2010;24(11):1920–1926. doi: 10.1038/leu.2010.198.
    1. Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J, Schützner J, Zatloukal P, Benkova K. Increased expression of inhibitor of apoptosis proteins, Survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol. 2009;35(6):1449–1462.
    1. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005.
    1. Shen XG, Wang C, Li Y, Wang L, Zhou B, Xu B, Jiang X, Zhou ZG, Sun XF. Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Colorectal Dis. 2010;12(12):1213–1218. doi: 10.1111/j.1463-1318.2009.02009.x.
    1. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Yang XH, Tora AD, Mehta K. Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002;21(57):8843–8851. doi: 10.1038/sj.onc.1206044.
    1. Fong PC, Xue WC, Ngan HYS, Chiu PM, Chan KYK, Tsao GSW, Cheung ANY. Caspase activity is downregulated in choriocarcinoma: a cDNA array differential expression study. J Clin Pathol. 2006;59(2):179–183. doi: 10.1136/jcp.2005.028027.
    1. Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118:265–267. doi: 10.1242/jcs.01610.
    1. Friesen C, Fulda S, Debatin KM. Deficient activation of the CD95 (APO-1/Fas) system in drug resistant cells. Leukaemia. 1997;11(11):1833–1841. doi: 10.1038/sj.leu.2400827.
    1. Fulda S, Los M, Friesen C, Debatin KM. Chemosensitivity of solid tumour cells in vitro is related to activation of the CD95 system. Int J Cancer. 1998;76(1):105–114. doi: 10.1002/(SICI)1097-0215(19980330)76:1<105::AID-IJC17>;2-B.
    1. Fulda S. Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol. 2010;2010:370835.
    1. Reesink-Peters N, Hougardy BM, van den Heuvel FA, Ten Hoor KA, Hollema H, Boezen HM, de Vries EG, de Jong S, van der Zee AG. Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynaecol Oncol. 2005;96(3):705–713. doi: 10.1016/j.ygyno.2004.10.046.
    1. Rai KR, Moore J, Wu J, Novick SC, O'Brien SM. Effect of the addition of oblimersen (Bcl-2 antisense) to fludarabine/cyclophosphamide for replased/refractory chronic lymphocytic leukaemia (CLL) on survival in patients who achieve CR/nPR: Five-year follow-up from a randomized phase III study [abstract] J Clin Oncol. 2008;26:7008.
    1. Abou-Nassar K, Brown JR. Novel agents for the treatment of chronic lymphocytic leukaemia. Clin Adv Haematol Oncol. 2010;8(12):886–895.
    1. Kang MH, Reynolds CP. Bcl-2 inhibitors. Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–1132. doi: 10.1158/1078-0432.CCR-08-0144.
    1. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–681. doi: 10.1038/nature03579.
    1. Albershardt TC, Salerni BL, Soderquist RS, Bates DJ, Pletnev AA, Kisselev AF, Eastman A. Multiple BH3 mimetics antagonize antiapoptotic MCL1 protein by inducing the endoplasmic reticulum stress response and upregulating BH3-only protein NOXA. J Biol Chem. 2011;286(28):24882–24895. doi: 10.1074/jbc.M111.255828.
    1. Ocker M, Neureiter D, Lueders M, Zopf S, Ganslmayer M, Hahn EG, Herold C, Schuppan D. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut. 2005;54(9):1298–1308. doi: 10.1136/gut.2004.056192.
    1. Wu X, Liu X, Sengupta J, Bu Y, Yi F, Wang C, Shi Y, Zhu Y, Jiao Q, Song F. Silencing of Bmi-1 gene by RNA interference enhances sensitivity to doxorubicin in breast cancer cells. Indian J Exp Biol. 2011;49(2):105–112.
    1. Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, Hong WK, Komaki R, Lee JJ, Nesbitt JC, Pisters KM, Putnam JB, Schea R, Shin DM, Walsh GL, Dolormente MM, Han CI, Martin FD, Yen N, Xu K, Stephens LC, McDonnell TJ, Mukhopadhyay T, Cai D. Retrovirus-mediated wild-type p53 gene transfer to tumuors of patients with lung cancer. Nature Medicine. 1996;2(9):985–991. doi: 10.1038/nm0996-985.
    1. Chène P. p53 as a drug target in cancer therapy. Expert Opin Ther Patents. 2001;11(6):923–935. doi: 10.1517/13543776.11.6.923.
    1. Suzuki K, Matusubara H. Recent advances in p53 research and cancer treatment. J Biomed Biotech. 2011;2011:978312.
    1. John Nemunaitis, Ian Ganly, Fadlo Khuri, James Arseneau, Joseph Kuhn, Todd McCarty, Stephen Landers, Phillip Maples, Larry Rome, Britta Randlev, Tony Reid, Sam Kaye, David Kirn. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res. 2000;60:6359.
    1. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilised mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA. 2008;105(30):10360–10365. doi: 10.1073/pnas.0805326105.
    1. Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht A. Characterisation of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene. 2002;21(14):2119–2129. doi: 10.1038/sj.onc.1205362.
    1. Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2008;49:223–241.
    1. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumours and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008;105(10):3933–3938. doi: 10.1073/pnas.0708917105.
    1. Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJ, Pass G, Woods J, Lane DP, Westwood NJ. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454–463. doi: 10.1016/j.ccr.2008.03.004.
    1. Kuball J, Schuler M, Antunes Ferreira E, Herr W, Neumann M, Obenauer-Kutner L, Westreich L, Huber C, Wölfel T, Theobald M. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther. 2002;9(13):833–843.
    1. Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother. 2004;53(7):633–641. doi: 10.1007/s00262-003-0493-5.
    1. Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol. 2011;2011:702146.
    1. Dai Y, Lawrence TS, Xu L. Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Tranl Res. 2009;1(1):1–15.
    1. Cao C, Mu Y, Hallahan DE, Lu B. XIAP and Survivin as therapeutic targets for radiation sensitisation in preclinical models of lung cancer. Oncogene. 2004;23:7047–7052. doi: 10.1038/sj.onc.1207929.
    1. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, Mayer LD, LaCasse EC. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003;9:2826–2836.
    1. Ohnishi K, Scuric Z, Schiesti RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res. 2006;166:454–462. doi: 10.1667/RR3606.1.
    1. Yamaguchi Y, Shiraki K, Fuke H, Inoue T, Miyashita K, Yamanaka Y, Saitou Y, Sugimoto K, Nakano T. Targeting of X-linked inhibitor of apoptosis protein or Survivin by short interfering RNAs sensitises hepatoma cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic agent-induced cell death. Oncol Rep. 2005;12:1211–1316.
    1. Grossman D, McNiff JM, Li F, Altieri DC. Expression and targeting of the apoptosis inhibitor, Survivin, in human melanoma. J Invest Dermatol. 1999;113(6):1076–1081. doi: 10.1046/j.1523-1747.1999.00776.x.
    1. Sharma H, Sen S, Lo ML Mraiggiò, Singh N. Antisense-mediated downregulation of antiapoptotic proteins induces apoptosis and sensitises head and neck squamous cell carcinoma cells to chemotherapy. Cancer Biol Ther. 2005;4:720–727. doi: 10.4161/cbt.4.7.1783.
    1. Du ZX, Zhang HY, Gao DX, Wang HQ, Li YJ, Liu GL. Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells. Exp Mol Med. 2006;38:230–240.
    1. Kami K, Doi R, Koizumi M, Toyoda E, Mori T, Ito D, Kawaguchi Y, Fujimoto K, Wada M, Miyatake S, Imamura M. Downregulation of Survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery. 2005;138(2):299–305. doi: 10.1016/j.surg.2005.05.009.
    1. Liu Q, Dong C, Li L, Sun J, Li C, Li L. Inhibitory effects of the survivin siRNA transfection on human lung adenocarcinoma cells SPCA1 and SH77. Zhongguo Fei Ai Za Zhi. 2011;14(1):18–22.
    1. Zhang X, Li N, Wang YH, Huang Y, Xu NZ, Wu LY. Effects of Survivin siRNA on growth, apoptosis and chemosensitivity of ovarian cancer cells SKOV3/DDP. Zhonghua Zhong Liu Za Zhi. 2009;31(3):174–177.
    1. Yang CT, Li JM, Weng HH, Li YC, Chen HC, Chen MF. Adenovirus-mediated transfer of siRNA against Survivin enhances the radiosensitivity of human non-small cell lung cancer cells. Cancer Gene Ther. 2010;17:120–130. doi: 10.1038/cgt.2009.55.
    1. Pennati M, Folini M, Zaffaroni N. Targeting Survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis. 2007;28(6):1133–1139. doi: 10.1093/carcin/bgm047.
    1. Sun H, Liu L, Lu J, Qiu S, Yang CY, Yi H, Wang S. Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorg Med Chem Lett. 2010;20(10):3043–3046. doi: 10.1016/j.bmcl.2010.03.114.
    1. Lu J, McEachern D, Sun H, Bai L, Peng Y, Qiu S, Miller R, Liao J, Yi H, Liu M, Bellail A, Hao C, Sun SY, Ting AT, Wang S. Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol Cancer Ther. 2011;10(5):902–914. doi: 10.1158/1535-7163.MCT-10-0864.
    1. Rohn JL, Noteborn MH. The viral death effector Apoptin reveals tumour-specific processes. Apoptosis. 2004;9:315–322.
    1. Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol. 2004;26(2):82–97.
    1. Yamabe K, Shimizu S, Ito T, Yoshioka Y, Nomura M, Narita M, Saito I, Kanegae Y, Matsuda H. Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther. 1999;6(12):1952–1959. doi: 10.1038/sj.gt.3301041.
    1. Cam L, Boucquey A, Coulomb-L'hermine A, Weber A, Horellou P. Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J Gene Med. 2005;7(1):30–38. doi: 10.1002/jgm.636.
    1. Li X, Fan R, Zou X, Gao L, Jin H, Du R, Xia L, Fan D. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma. Biochem Bioohys Res Commun. 2007;358(2):489–494. doi: 10.1016/j.bbrc.2007.04.134.

Source: PubMed

3
Abonner