Adjuvant modulation of immune responses to tuberculosis subunit vaccines

E B Lindblad, M J Elhay, R Silva, R Appelberg, P Andersen, E B Lindblad, M J Elhay, R Silva, R Appelberg, P Andersen

Abstract

Mice were immunized with experimental subunit vaccines based on secreted antigens from Mycobacterium tuberculosis in a series of adjuvants, comprising incomplete Freund's adjuvant (IFA), dimethyl dioctadecyl ammoniumbromide (DDA), RIBI adjuvant, Quil-A saponin, and aluminum hydroxide. Immune responses induced by these vaccines were characterized by in vitro culture of primed cells, PCR analysis for cytokine mRNA, detection of specific immunoglobulin G isotypes induced, and monitoring of protective immunity to tuberculosis (TB). The study demonstrated marked differences in the immune responses induced by the different adjuvants and identified both IFA and DDA as efficient adjuvants for a TB subunit vaccine. Aluminum hydroxide, on the other hand, induced a Th2 response which increased the susceptibility of the animals to a subsequent TB challenge. DDA was further coadjuvanted with either the Th1-stimulating polymer poly(I-C) or the cytokines gamma interferon, interleukin 2 (IL-2), and IL-12. The addition of IL-12 was found to amplify a Th1 response in a dose-dependent manner and promoted a protective immune response against a virulent challenge. However, if the initial priming in the presence of IL-12 was followed by two booster injections of vaccine without IL-12, no improvement in long-term efficacy was found. This demonstrates the efficacy of DDA to promote an efficient immune response and suggests that IL-12 may accelerate this development, but not change the final outcome of a full vaccination regime.

References

    1. Rev Inst Med Trop Sao Paulo. 1970 Jan-Feb;12(1):46-54
    1. Lancet. 1973 Feb 3;1(7797):215-9
    1. Infect Immun. 1974 Dec;10(6):1329-36
    1. Clin Exp Immunol. 1980 Feb;39(2):435-41
    1. Arch Virol. 1980;65(3-4):211-7
    1. Eur J Immunol. 1986 Oct;16(10):1263-7
    1. Anal Biochem. 1987 Apr;162(1):156-9
    1. N Engl J Med. 1989 Mar 2;320(9):545-50
    1. Exp Parasitol. 1989 Apr;68(3):369-72
    1. Annu Rev Immunol. 1989;7:145-73
    1. Cell Immunol. 1989 Jun;121(1):134-45
    1. J Exp Med. 1993 Dec 1;178(6):2243-7
    1. J Exp Med. 1993 Dec 1;178(6):2249-54
    1. J Exp Med. 1994 Apr 1;179(4):1285-95
    1. Chest. 1994 May;105(5):1338-41
    1. Infect Immun. 1994 Jun;62(6):2536-44
    1. J Leukoc Biol. 1995 Apr;57(4):515-22
    1. Infect Immun. 1995 May;63(5):1710-7
    1. Annu Rev Immunol. 1995;13:251-76
    1. Immunology. 1995 Jul;85(3):502-8
    1. Eur J Immunol. 1995 Sep;25(9):2656-60
    1. Proc Natl Acad Sci U S A. 1990 May;87(9):3348-52
    1. Infect Immun. 1991 Apr;59(4):1558-63
    1. Infect Immun. 1991 Jun;59(6):1905-10
    1. AIDS. 1991 Apr;5(4):399-405
    1. Immunology. 1995 Aug;85(4):556-61
    1. Res Immunol. 1995 Sep-Oct;146(7-8):486-9
    1. J Exp Med. 1991 Sep 1;174(3):583-92
    1. Science. 1991 Oct 11;254(5029):277-9
    1. Science. 1991 Oct 11;254(5029):279-82
    1. J Immunol. 1992 Feb 15;148(4):1182-7
    1. Immunol Rev. 1991 Dec;124:5-24
    1. JAMA. 1992 Jul 22-29;268(4):504-9
    1. Infect Immun. 1992 Nov;60(11):4781-92
    1. Infect Immun. 1993 Mar;61(3):844-51
    1. Vaccine. 1993;11(3):293-306
    1. J Infect Dis. 1993 Jun;167(6):1481-97
    1. J Exp Med. 1993 Sep 1;178(3):1041-8
    1. Eur J Immunol. 1993 Sep;23(9):2223-9
    1. Immunol Today. 1993 Jun;14(6):281-4

Source: PubMed

3
Abonner