Sonographic pancreas echogenicity in cystic fibrosis compared to exocrine pancreatic function and pancreas fat content at Dixon-MRI

Trond Engjom, Giedre Kavaliauskiene, Erling Tjora, Friedemann Erchinger, Gaute Wathle, Birger Norderud Lærum, Pål Rasmus Njølstad, Jens Brøndum Frøkjær, Odd Helge Gilja, Georg Dimcevski, Ingfrid Salvesen Haldorsen, Trond Engjom, Giedre Kavaliauskiene, Erling Tjora, Friedemann Erchinger, Gaute Wathle, Birger Norderud Lærum, Pål Rasmus Njølstad, Jens Brøndum Frøkjær, Odd Helge Gilja, Georg Dimcevski, Ingfrid Salvesen Haldorsen

Abstract

Objective: Fatty infiltration of the pancreas is a dominating feature in cystic fibrosis (CF). We evaluate the association between pancreatic fat content assessed by Dixon magnetic resonance imaging (MRI), pancreatic echogenicity at ultrasonography (US) and exocrine function in CF patients and healthy controls (HC).

Material and methods: Transabdominal US, pancreatic Dixon-MRI and diffusion-weighted imaging (DWI) were performed in 21 CF patients and 15 HCs. Exocrine function was assessed by endoscopic secretin test and fecal elastase.

Results: CF patients were grouped according to exocrine pancreatic function as subjects with normal (CFS: n = 11) or reduced (CFI: n = 10) function. Among CFI 90% (9/10) had visual hyperechogenicity. CFI also had increased echo-level values (p<0.05 vs others). All CFI (10/10) had markedly increased pancreatic fat content estimated by MRI compared to sufficient groups, p<0.001). Among CFS patients and HC, 27% (3/11) and 33% (5/15), respectively, had hyperechoic pancreas. However, all these had low pancreatic fat-content at MRI compared to CFI. In CFI, pancreatic fat content was correlated to ADC (r = -0.93, p<0.001).

Conclusion: Pancreas insufficient CF patients exhibit severe pancreatic fatty-infiltration at MRI and hyperechoic pancreas at US. Pancreas hyperechogenicity in pancreatic sufficient subjects does not co-exist with fatty infiltration at MRI. MRI evaluates pancreatic fatty infiltration more accurately than US and fat infiltration estimated by MRI outperforms sonographic hyper-echogenicity as a marker for exocrine pancreatic failure in CF.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Inclusion flow chart according to…
Fig 1. Inclusion flow chart according to the CONSORT guideline.
CFI: Pancreas insufficient cystic fibrosis patients. CFS: Pancreas insufficient cystic fibrosis patients. HC: Healthy controls.
Fig 2. US (left column), Dixon MRI…
Fig 2. US (left column), Dixon MRI (middle columns) and ADC maps (DWI) (right column) images of the pancreas in patients with CFI (upper row); CFS (middle row) and HC (lower row).
The CFI patients typically exhibited pancreatic hyperechogenicity (US), increased pancreatic fat content demonstrated by hyperintensity on fat image and hypointensity on the corresponding water image (Dixon MRI) and restricted diffusion with pancreatic hypointensity on the ADC map (upper row), whereas none of the CFS patients or HCs had signs of increased pancreatic fat content or restricted diffusion (middle and lower row). The boundaries of the pancreas are indicated with arrows and the selected ROIs in the liver, pancreas and vessel of US are marked in the HC subject. ADC: apparent diffusion coefficient, CFI: Pancreas insufficient cystic fibrosis, CFS: Pancreas sufficient cystic fibrosis, DWI: Diffusion weighted imaging, HC: Healthy control, US: ultrasound.
Fig 3. Panel a displays percentage of…
Fig 3. Panel a displays percentage of subjects with a hyperechoic pancreas in CFI patients, CFS patients and HCs.
Panel b displays box and scatterplots for the US liver/pancreas echo-intensity ratios (US-LP) in the three groups. Panel c displays box and scatterplots for the MRI-Dixon fat-signal fraction in the three groups. Panel d displays box and scatterplots for ADC in the three groups. CFI: Pancreas insufficient cystic fibrosis, CFS: Pancreas sufficient cystic fibrosis, HC: Healthy control. US: Ultrasonography. US-LP: Ultrasound liver-pancreas signal intensity ratio. ADC: Apparent diffusion coefficient. ns: Not significant. (*Pearson chi-square test).
Fig 4. Panel a displays poor correlations…
Fig 4. Panel a displays poor correlations in a scatterplot between the US liver/pancreas echo-intensity ratio and the MRI fat-signal fraction (FSF).
There is a marked difference in the FSF between the pancreatic sufficient (CFS and HCs) and pancreatic insufficient (CFI) groups. Panel b displays the difference of fat-signal fraction between the subjects with a hyperechoic pancreas and the subjects with a normal pancreas in the pancreatic sufficient (PS) subjects (i.e. CFS and HC). Panel c displays almost perfect correlation between the pancreatic MRI-Dixon fat-signal fraction and the pancreatic ADC value in CFI patients and lack of correlation in the in the pancreatic sufficient groups. ADC: apparent diffusion coefficient, CFI: Pancreas insufficient cystic fibrosis, CFS: Pancreas sufficient cystic fibrosis, HC: Healthy control.
Fig 5. Receiver operator (ROC) curves for…
Fig 5. Receiver operator (ROC) curves for all US and MRI parameters for the prediction of exocrine pancreatic insufficiency yielded significantly better AUC for the MRI parameters (A: Area under ROC) than for the US parameters.
The p value

References

    1. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.
    1. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.
    1. Kerem E, Corey M, Kerem BS, Rommens J, Markiewicz D, Levison H, et al. The relation between genotype and phenotype in cystic fibrosis—analysis of the most common mutation (delta F508). NEnglJMed. 1990;323(22):1517–22.
    1. The Clinical and Functional Translation of CFTR (CFTR2) [Internet]. [cited 11.07.2018]. Available from: .
    1. Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, Forstner G. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology. 1988;95(2):349–55.
    1. Durie PR, Forstner GG. Pathophysiology of the exocrine pancreas in cystic fibrosis. JRSocMed. 1989;82 Suppl 16:2–10.
    1. Kopito LE, Shwachman H. The pancreas in cystic fibrosis: chemical composition and comparative morphology. PediatrRes. 1976;10(8):742–9.
    1. Dietrich CF, Chichakli M, Hirche TO, Bargon J, Leitzmann P, Wagner TO, et al. Sonographic findings of the hepatobiliary-pancreatic system in adult patients with cystic fibrosis. JUltrasound Med. 2002;21(4):409–16.
    1. Engjom T, Erchinger F, Laerum BN, Tjora E, Gilja OH, Dimcevski G. Ultrasound echo-intensity predicts severe pancreatic affection in cystic fibrosis patients. PLoSOne. 2015;10(3):e0121121 10.1371/journal.pone.0121121 [doi];PONE-D-14-44984.
    1. Wilson-Sharp RC, Irving HC, Brown RC, Chalmers DM, Littlewood JM. Ultrasonography of the pancreas, liver, and biliary system in cystic fibrosis. ArchDisChild. 1984;59(10):923–6.
    1. Feigelson J, Pecau Y, Poquet M, Terdjman P, Carrere J, Chazalette JP, et al. Imaging changes in the pancreas in cystic fibrosis: a retrospective evaluation of 55 cases seen over a period of 9 years. JPediatrGastroenterolNutr. 2000;30(2):145–51.
    1. Graham N, Manhire AR, Stead RJ, Lees WR, Hodson ME, Batten JC. Cystic fibrosis: ultrasonographic findings in the pancreas and hepatobiliary system correlated with clinical data and pathology. ClinRadiol. 1985;36(2):199–203.
    1. Glaser J, Stienecker K. Pancreas and aging: a study using ultrasonography. Gerontology. 2000;46(2):93–6. 10.1159/000022141
    1. Worthen NJ, Beabeau D. Normal pancreatic echogenicity: relation to age and body fat. AJR AmJRoentgenol. 1982;139(6):1095–8.
    1. Madzak A, Olesen SS, Haldorsen IS, Drewes AM, Frokjaer JB. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis. Pancreatology: official journal of the International Association of Pancreatology (IAP) [et al]. 2017. Pancreatology 2017:228–236. 10.1016/j.pan.2017.01.009
    1. Raeder H, Haldorsen IS, Ersland L, Gruner R, Taxt T, Sovik O, et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes. 2007;56(2):444–9. Epub 2007/01/30. 10.2337/db06-0859
    1. Marks WM, Filly RA, Callen PW. Ultrasonic evaluation of normal pancreatic echogenicity and its relationship to fat deposition. Radiology. 1980;137(2):475–9. 10.1148/radiology.137.2.7433680
    1. Friedrich-Rust M, Schlueter N, Smaczny C, Eickmeier O, Rosewich M, Feifel K, et al. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis. Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society. 2013;12(5):431–9. Epub 2013/01/31.
    1. Engjom T, Nylund K, Erchinger F, Stangeland M, Laerum BN, Mezl M, et al. Contrast-enhanced ultrasonography of the pancreas shows impaired perfusion in pancreas insufficient cystic fibrosis patients. BMC medical imaging. 2018;18(1):14 10.1186/s12880-018-0259-3
    1. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189–94. 10.1148/radiology.153.1.6089263
    1. Ma J. Dixon techniques for water and fat imaging. Journal of magnetic resonance imaging: JMRI. 2008;28(3):543–58. 10.1002/jmri.21492
    1. Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magnetic resonance in medicine. 1991;18(2):371–83.
    1. Yoon JH, Lee JM, Lee KB, Kim SW, Kang MJ, Jang JY, et al. Pancreatic Steatosis and Fibrosis: Quantitative Assessment with Preoperative Multiparametric MR Imaging. Radiology. 2016;279(1):140–50. 10.1148/radiol.2015142254
    1. Fiel SB, Friedman AC, Caroline DF, Radecki PD, Faerber E, Grumbach K. Magnetic resonance imaging in young adults with cystic fibrosis. Chest. 1987;91(2):181–4.
    1. Murayama S, Robinson AE, Mulvihill DM, Goyco PG, Beckerman RC, Hines MR, et al. MR imaging of pancreas in cystic fibrosis. PediatrRadiol. 1990;20(7):536–9.
    1. Tham RT, Heyerman HG, Falke TH, Zwinderman AH, Bloem JL, Bakker W, et al. Cystic fibrosis: MR imaging of the pancreas. Radiology. 1991;179(1):183–6. 10.1148/radiology.179.1.2006275
    1. Frokjaer JB, Olesen SS, Drewes AM. Fibrosis, atrophy, and ductal pathology in chronic pancreatitis are associated with pancreatic function but independent of symptoms. Pancreas. 2013;42(7):1182–7. 10.1097/MPA.0b013e31829628f4
    1. Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. JPediatr. 2008;153(2):S4–S14
    1. Wathle GK, Tjora E, Ersland L, Dimcevski G, Salvesen OO, Molven A, et al. Assessment of exocrine pancreatic function by secretin-stimulated magnetic resonance cholangiopancreaticography and diffusion-weighted imaging in healthy controls. JMagn ResonImaging. 2013.
    1. Engjom T, Erchinger F, Laerum BN, Tjora E, Aksnes L, Gilja OH, et al. Diagnostic Accuracy of a Short Endoscopic Secretin Test in Patients With Cystic Fibrosis. Pancreas. 2015;44(8):1266–72. 10.1097/MPA.0000000000000425
    1. Borowitz D, Baker SS, Duffy L, Baker RD, Fitzpatrick L, Gyamfi J, et al. Use of fecal elastase-1 to classify pancreatic status in patients with cystic fibrosis. JPediatr. 2004;145(3):322–6.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45.
    1. WMA general assembly 2015. World medical association declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects. Available from: [Acessed 10.07.2018]
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ (Clinical research ed). 2015;351:h5527.
    1. Manning P, Murphy P, Wang K, Hooker J, Wolfson T, Middleton MS, et al. Liver histology and diffusion-weighted MRI in children with nonalcoholic fatty liver disease: A MAGNET study. Journal of magnetic resonance imaging: JMRI. 2017;46(4):1149–58. 10.1002/jmri.25663
    1. Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society. 2014;13 Suppl 1:S23–42.
    1. O'Sullivan BP, Baker D, Leung KG, Reed G, Baker SS, Borowitz D. Evolution of Pancreatic Function during the First Year in Infants with Cystic Fibrosis. JPediatr. 2013;162(4):808–12.

Source: PubMed

3
Abonner