Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment

Xiaoying Gu, Fei Zhou, Yeming Wang, Guohui Fan, Bin Cao, Xiaoying Gu, Fei Zhou, Yeming Wang, Guohui Fan, Bin Cao

Abstract

According to the Third International Consensus Definition for Sepsis and Septic Shock, sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Epidemiological data about sepsis from the 2017 Global Burden of Diseases, Injuries and Risk Factor Study showed that the global burden of sepsis was greater than previously estimated. Bacteria have been shown to be the predominant pathogen of sepsis among patients with pathogens detected, while sepsis caused by viruses is underdiagnosed worldwide. The coronavirus disease that emerged in 2019 in China and now in many other countries has brought viral sepsis back into the vision of physicians and researchers worldwide. Although the current understanding of the pathophysiology of sepsis has improved, the differences between viral and bacterial sepsis at the level of pathophysiology are not well understood. Diagnosis methods that can broadly differentiate between bacterial and viral sepsis at the initial stage after the development of sepsis are limited. New treatments that can be applied at clinics for sepsis are scarce and this situation is not consistent with the growing understanding of pathophysiology. This review aims to give a brief summary of current knowledge of the epidemiology, pathophysiology, diagnosis and treatment of viral sepsis.

Conflict of interest statement

Conflict of interest: X. Gu has nothing to disclose. Conflict of interest: F. Zhou has nothing to disclose. Conflict of interest: Y. Wang has nothing to disclose. Conflict of interest: G. Fan has nothing to disclose. Conflict of interest: B. Cao has nothing to disclose.

Copyright ©ERS 2020.

References

    1. Levy MM, Fink MP, Marshall JC, et al. . 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31: 1250–1256. doi:10.1097/01.CCM.0000050454.01978.3B
    1. Bone RC, Balk RA, Cerra FB, et al. . Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644–1655. doi:10.1378/chest.101.6.1644
    1. Cecconi M, Evans L, Levy M, et al. . Sepsis and septic shock. Lancet 2018; 392: 75–87. doi:10.1016/S0140-6736(18)30696-2
    1. Singer M, Deutschman CS, Seymour CW, et al. . The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801–810. doi:10.1001/jama.2016.0287
    1. Vincent JL, Moreno R, Takala J, et al. . The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22: 707–710. doi:10.1007/BF01709751
    1. Fleischmann C, Scherag A, Adhikari NK, et al. . Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016; 193: 259–272. doi:10.1164/rccm.201504-0781OC
    1. Rudd KE, Johnson SC, Agesa KM, et al. . Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395: 200–211. doi:10.1016/S0140-6736(19)32989-7
    1. Gaieski DF, Edwards JM, Kallan MJ, et al. . Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 2013; 41: 1167–1174. doi:10.1097/CCM.0b013e31827c09f8
    1. Martin GS, Mannino DM, Eaton S, et al. . The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546–1554. doi:10.1056/NEJMoa022139
    1. Kaukonen KM, Bailey M, Suzuki S, et al. . Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 2014; 311: 1308–1316. doi:10.1001/jama.2014.2637
    1. Hodgin KE, Moss M. The epidemiology of sepsis. Curr Pharm Des 2008; 14: 1833–1839. doi:10.2174/138161208784980590
    1. Reinhart K, Daniels R, Kissoon N, et al. . Recognizing sepsis as a global health priority – a WHO resolution. N Engl J Med 2017; 377: 414–417. doi:10.1056/NEJMp1707170
    1. Zahar JR, Timsit JF, Garrouste-Orgeas M, et al. . Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med 2011; 39: 1886–1895. doi:10.1097/CCM.0b013e31821b827c
    1. Vincent JL, Sakr Y, Sprung CL, et al. . Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34: 344–353. doi:10.1097/01.CCM.0000194725.48928.3A
    1. Phua J, Ngerng W, See K, et al. . Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care 2013; 17: R202. doi:10.1186/cc12896
    1. Ljungstrom LR, Jacobsson G, Claesson BEB, et al. . Respiratory viral infections are underdiagnosed in patients with suspected sepsis. Eur J Clin Microbiol Infect Dis 2017; 36: 1767–1776. doi:10.1007/s10096-017-2990-z
    1. Southeast Asia Infectious Disease Clinical Research Network . Causes and outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Health 2017; 5: e157–e167. doi:10.1016/S2214-109X(17)30007-4
    1. Zhou F, Wang Y, Liu Y, et al. . Disease severity and clinical outcomes of community acquired pneumonia caused by non-influenza respiratory viruses in adults: a multicenter prospective registry study from CAP-China Network. Eur Respir J 2019; 54: 1802406. doi:10.1183/13993003.02406-2018
    1. Cilloniz C, Ewig S, Polverino E, et al. . Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 2011; 66: 340–346. doi:10.1136/thx.2010.143982
    1. Huang C, Wang Y, Li X, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506.
    1. Chua AP, Lee KH. Procalcitonin in severe acute respiratory syndrome (SARS). J Infect 2004; 48: 303–306. doi:10.1016/j.jinf.2004.01.015
    1. Drosten C, Seilmaier M, Corman VM, et al. . Clinical features and virological analysis of a case of Middle East Respiratory Syndrome coronavirus infection. Lancet Infect Dis 2013; 13: 745–751. doi:10.1016/S1473-3099(13)70154-3
    1. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med 2018; 46: 997–1000. 10.1097/CCM.0000000000003119.
    1. Ferrer R, Martin-Loeches I, Phillips G, et al. . Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749–1755. doi:10.1097/CCM.0000000000000330
    1. Kumar A, Roberts D, Wood KE, et al. . Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589–1596. doi:10.1097/01.CCM.0000217961.75225.E9
    1. Singer M. Antibiotics for sepsis: does each hour really count, or is it incestuous amplification? Am J Respir Crit Care Med 2017; 196: 800–802. doi:10.1164/rccm.201703-0621ED
    1. Vincent JL, Rello J, Marshall J, et al. . International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302: 2323–2329. doi:10.1001/jama.2009.1754
    1. Lin GL, McGinley JP, Drysdale SB, et al. . Epidemiology and immune pathogenesis of viral sepsis. Front Immunol 2018; 9: 02147. doi:10.3389/fimmu.2018.02147
    1. Walden AP, Clarke GM, McKechnie S, et al. . Patients with community acquired pneumonia admitted to European intensive care units: an epidemiological survey of the GenOSept cohort. Crit Care 2014; 18: R58. doi:10.1186/cc13812
    1. Cilloniz C, Dominedo C, Magdaleno D, et al. . Pure viral sepsis secondary to community-acquired pneumonia in adults: risk and prognostic factors. J Infect Dis 2019; 220: 1166–1171. doi:10.1093/infdis/jiz257
    1. Ruuskanen O, Lahti E, Jennings LC, et al. . Viral pneumonia. Lancet 2011; 377: 1264–1275. doi:10.1016/S0140-6736(10)61459-6
    1. Dawood FS, Jain S, Finelli L, et al. . Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360: 2605–2615. doi:10.1056/NEJMoa0903810
    1. Kumar S, Wang L, Fan J, et al. . Detection of 11 common viral and bacterial pathogens causing community-acquired pneumonia or sepsis in asymptomatic patients by using a multiplex reverse transcription-PCR assay with manual (enzyme hybridization) or automated (electronic microarray) detection. J Clin Microbiol 2008; 46: 3063–3072. doi:10.1128/JCM.00625-08
    1. Vaccines against influenza WHO position paper – November 2012. Wkly Epidemiol Rec 2012; 87: 461–476.
    1. Tokars JI, Olsen SJ, Reed C. Seasonal incidence of symptomatic influenza in the United States. Clin Infect Dis 2018; 66: 1511–1518. doi:10.1093/cid/cix1060
    1. Iuliano AD, Roguski KM, Chang HH, et al. . Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 2018; 391: 1285–1300. doi:10.1016/S0140-6736(17)33293-2
    1. Ortiz JR, Neuzil KM, Shay DK, et al. . The burden of influenza-associated critical illness hospitalizations. Crit Care Med 2014; 42: 2325–2332. doi:10.1097/CCM.0000000000000545
    1. Florescu DF, Kalil AC. The complex link between influenza and severe sepsis. Virulence 2013; 5: 137–142. doi:10.4161/viru.27103
    1. Fukuyama S, Kawaoka Y. The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr Opin Immunol 2011; 23: 481–486. doi:10.1016/j.coi.2011.07.016
    1. Yang Y, Guo F, Zhao W, et al. . Novel avian-origin influenza A (H7N9) in critically ill patients in China. Crit Care Med 2015; 43: 339–345. doi:10.1097/CCM.0000000000000695
    1. Reed C, Chaves SS, Perez A, et al. . Complications among adults hospitalized with influenza: a comparison of seasonal influenza and the 2009 H1N1 pandemic. Clin Infect Dis 2014; 59: 166–174. doi:10.1093/cid/ciu285
    1. Jain S, Benoit SR, Skarbinski J, et al. . Influenza-associated pneumonia among hospitalized patients with 2009 pandemic influenza A (H1N1) virus – United States, 2009. Clin Infect Dis 2012; 54: 1221–1229. doi:10.1093/cid/cis197
    1. Han K, Ma H, An X, et al. . Early use of glucocorticoids was a risk factor for critical disease and death from pH1N1 infection. Clin Infect Dis 2011; 53: 326–333. doi:10.1093/cid/cir398
    1. World Health Organization . Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Date last updated: 31 December 2003; date last accessed: 29 January 2020.
    1. World Health Organization . Middle East respiratory syndrome coronavirus (MERS-CoV). Date last updated: 30 November 2019; date last accessed: 29 January 2020.
    1. China National Health Commission . Update on the outbreak of coronavirus disease 2019 (March 4, 2020). Date last updated: 10 June 2020; date last accessed: 11 June 2020.
    1. World Health Organization . Coronavirus disease (COVID-2019) situation reports. Date last updated: 10 June 2020; date last accessed: 11 June 2020.
    1. Zhou F, Yu T, Du R, et al. . Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054–1062. 10.1016/S0140-6736.
    1. Modhiran N, Watterson D, Muller DA, et al. . Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 2015; 7: 304ra142. doi:10.1126/scitranslmed.aaa3863
    1. Zahariadis G, Jerome KR, Corey L. Herpes simplex virus-associated sepsis in a previously infected immunocompetent adult. Ann Intern Med 2003; 139: 153–154. doi:10.7326/0003-4819-139-2-200307150-00020
    1. Martinez E, de Diego A, Paradis A, et al. . Herpes simplex pneumonia in a young immunocompetent man. Eur Respir J 1994; 7: 1185–1188.
    1. Koeltz A, Lastere S, Jean-Baptiste S. Intensive care admissions for severe chikungunya virus infection, French Polynesia. Emerging Infect Dis 2018; 24: 794–796. doi:10.3201/eid2404.161536
    1. Rolle A, Schepers K, Cassadou S, et al. . Severe sepsis and septic shock associated with chikungunya virus infection, Guadeloupe, 2014. Emerging Infect Dis 2016; 22: 891–894. doi:10.3201/eid2205.151449
    1. Kadambari S, Harvala H, Simmonds P, et al. . Strategies to improve detection and management of human parechovirus infection in young infants. Lancet Infect Dis 2019; 19: e51–e58. doi:10.1016/S1473-3099(18)30288-3
    1. Olijve L, Jennings L, Walls T. Human parechovirus: an increasingly recognized cause of sepsis-like illness in young infants. Clin Microbiol Rev 2018; 31: e00047-17.
    1. Moore CC, Jacob ST, Banura P, et al. . Etiology of sepsis in Uganda using a quantitative polymerase chain reaction-based TaqMan Array Card. Clin Infect Dis 2019; 68: 266–272. doi:10.1093/cid/ciy472
    1. Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med 2009; 37: 2350–2358. doi:10.1097/CCM.0b013e3181a3aa43
    1. Arabi YM, Arifi AA, Balkhy HH, et al. . Clinical course and outcomes of critically ill patients with Middle East Respiratory Syndrome coronavirus infection. Ann Intern Med 2014; 160: 389–397. doi:10.7326/M13-2486
    1. Bakalli I. Liver dysfunction in severe sepsis from respiratory syncytial virus. J Pediatr Intensive Care 2018; 7: 110–114. doi:10.1055/s-0037-1612609
    1. Farcas GA, Poutanen SM, Mazzulli T, et al. . Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J Infect Dis 2005; 191: 193–197. doi:10.1086/426870
    1. Nin N, Lorente JA, Soto L, et al. . Acute kidney injury in critically ill patients with 2009 influenza A (H1N1) viral pneumonia: an observational study. Intensive Care Med 2011; 37: 768–774. doi:10.1007/s00134-011-2167-7
    1. Gao C, Wang Y, Gu X, et al. . Association between cardiac injury and mortality in hospitalized patients infected with avian influenza A (H7N9) virus. Crit Care Med 2020; 48: 451–458 in press [].
    1. Tang N, Li D, Wang X, et al. . Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18: 1233–1234.
    1. van der Poll T, van de Veerdonk FL, Scicluna BP, et al. . The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17: 407–420. doi:10.1038/nri.2017.36
    1. Boyd JH, Russell JA, Fjell CD. The meta-genome of sepsis: host genetics, pathogens and the acute immune response. J Innate Immun 2014; 6: 272–283. doi:10.1159/000358835
    1. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820. doi:10.1016/j.cell.2010.01.022
    1. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995. doi:10.1038/ni1112
    1. Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med 2015; 277: 277–293. doi:10.1111/joim.12331
    1. Tressel SL, Kaneider NC, Kasuda S, et al. . A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med 2011; 3: 370–384. doi:10.1002/emmm.201100145
    1. Claushuis TA, van Vught LA, Scicluna BP, et al. . Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood 2016; 127: 3062–3072. doi:10.1182/blood-2015-11-680744
    1. de Stoppelaar SF, van ’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost 2014; 112: 666–677. doi:10.1160/TH14-02-0126
    1. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity 2014; 40: 463–475. doi:10.1016/j.immuni.2014.04.001
    1. Chan JK, Roth J, Oppenheim JJ, et al. . Alarmins: awaiting a clinical response. J Clin Invest 2012; 122: 2711–2719. doi:10.1172/JCI62423
    1. Merle NS, Noe R, Halbwachs-Mecarelli L, et al. . Complement system part II: role in immunity. Front Immunol 2015; 6: 257.
    1. Silasi-Mansat R, Zhu H, Popescu NI, et al. . Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 2010; 116: 1002–1010. doi:10.1182/blood-2010-02-269746
    1. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 2017; 149: 38–44. doi:10.1016/j.thromres.2016.11.007
    1. Abraham E, Reinhart K, Opal S, et al. . Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 2003; 290: 238–247. doi:10.1001/jama.290.2.238
    1. Boomer JS, To K, Chang KC, et al. . Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306: 2594–2605. doi:10.1001/jama.2011.1829
    1. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 2013; 13: 862–874. doi:10.1038/nri3552
    1. Hotchkiss RS, Tinsley KW, Swanson PE, et al. . Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol 2002; 168: 2493–2500. doi:10.4049/jimmunol.168.5.2493
    1. Liu TF, Yoza BK, El Gazzar M, et al. . NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 2011; 286: 9856–9864. doi:10.1074/jbc.M110.196790
    1. Short KR, Kroeze E, Fouchier RAM, et al. . Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis 2014; 14: 57–69. doi:10.1016/S1473-3099(13)70286-X
    1. Shinya K, Ebina M, Yamada S, et al. . Avian flu: influenza virus receptors in the human airway. Nature 2006; 440: 435–436. doi:10.1038/440435a
    1. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, et al. . Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 2009; 361: 680–689. doi:10.1056/NEJMoa0904252
    1. Guarner J, Falcon-Escobedo R. Comparison of the pathology caused by H1N1, H5N1, and H3N2 influenza viruses. Arch Med Res 2009; 40: 655–661. doi:10.1016/j.arcmed.2009.10.001
    1. Uiprasertkul M, Kitphati R, Puthavathana P, et al. . Apoptosis and pathogenesis of avian influenza A (H5N1) virus in humans. Emerging Infect Dis 2007; 13: 708–712. doi:10.3201/eid1305.060572
    1. Ng WF, To KF. Pathology of human H5N1 infection: new findings. Lancet 2007; 370: 1106–1108. doi:10.1016/S0140-6736(07)61490-1
    1. Liu Y, Childs RA, Matrosovich T, et al. . Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol 2010; 84: 12069–12074. doi:10.1128/JVI.01639-10
    1. Yamada S, Suzuki Y, Suzuki T, et al. . Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 2006; 444: 378–382. doi:10.1038/nature05264
    1. Teijaro JR, Walsh KB, Cahalan S, et al. . Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146: 980–991. doi:10.1016/j.cell.2011.08.015
    1. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1–20. doi:10.1196/annals.1443.020
    1. Esposito S, Molteni CG, Giliani S, et al. . Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children. Virol J 2012; 9: 270. doi:10.1186/1743-422X-9-270
    1. Guillot L, Le Goffic R, Bloch S, et al. . Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 2005; 280: 5571–5580. doi:10.1074/jbc.M410592200
    1. Imai Y, Kuba K, Neely GG, et al. . Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133: 235–249. doi:10.1016/j.cell.2008.02.043
    1. Diebold SS, Kaisho T, Hemmi H, et al. . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531. doi:10.1126/science.1093616
    1. Pichlmair A, Schulz O, Tan CP, et al. . RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006; 314: 997–1001. doi:10.1126/science.1132998
    1. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 2011; 6: 147–163. doi:10.1146/annurev-pathol-011110-130158
    1. Steinberg BE, Goldenberg NM, Lee WL. Do viral infections mimic bacterial sepsis? The role of microvascular permeability: a review of mechanisms and methods. Antiviral Res 2012; 93: 2–15. doi:10.1016/j.antiviral.2011.10.019
    1. China National Health Commission . Notice on the issuance of diagnosis and treatment procedure for pneumonia patients infected with the 2019-nCoV (Version 7). Date last updated: 4 March 2020; date last accessed: 5 March 2020.
    1. Giza DE, Fuentes-Mattei E, Bullock MD, et al. . Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death Differ 2016; 23: 1906–1918. doi:10.1038/cdd.2016.94
    1. Marandu T, Dombek M, Cook CH. Impact of cytomegalovirus load on host response to sepsis. Med Microbiol Immunol 2019; 208: 295–303. doi:10.1007/s00430-019-00603-y
    1. Heininger A, Haeberle H, Fischer I, et al. . Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care 2011; 15: R77. doi:10.1186/cc10069
    1. van de Groep K, Nierkens S, Cremer OL, et al. . Effect of cytomegalovirus reactivation on the time course of systemic host response biomarkers in previously immunocompetent critically ill patients with sepsis: a matched cohort study. Crit Care 2018; 22: 348. doi:10.1186/s13054-018-2261-0
    1. Centers for Disease Control and Prevention . Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) – United States, May–August 2009. MMWR Morb Mortal Wkly Rep 2009; 58: 1071–1074.
    1. Smith CM, Sandrini S, Datta S, et al. . Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014; 190: 196–207. doi:10.1164/rccm.201311-2110OC
    1. McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 2002; 186: 341–350. doi:10.1086/341462
    1. Hament JM, Kimpen JL, Fleer A, et al. . Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol 1999; 26: 189–195. doi:10.1111/j.1574-695X.1999.tb01389.x
    1. Colamussi ML, White MR, Crouch E, et al. . Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria. Blood 1999; 93: 2395–2403. doi:10.1182/blood.V93.7.2395
    1. Nickerson CL, Jakab GJ. Pulmonary antibacterial defenses during mild and severe influenza virus infection. Infect Immun 1990; 58: 2809–2814. doi:10.1128/IAI.58.9.2809-2814.1990
    1. Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol 2017; 55: 2313–2320. doi:10.1128/JCM.00476-17
    1. Oeschger T, McCloskey D, Kopparthy V, et al. . Point of care technologies for sepsis diagnosis and treatment. Lab Chip 2019; 19: 728–737. doi:10.1039/C8LC01102H
    1. Gilbert DN. Procalcitonin as a biomarker in respiratory tract infection. Clin Infect Dis 2011; 52: Suppl. 4, S346–S350. doi:10.1093/cid/cir050
    1. Sweeney TE, Shidham A, Wong HR, et al. . A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med 2015; 7: 287ra271. doi:10.1126/scitranslmed.aaa5993
    1. Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med 2016; 8: 346ra391. doi:10.1126/scitranslmed.aaf7165
    1. Zaas AK, Burke T, Chen M, et al. . A host-based RT-PCR gene expression signature to identify acute respiratory viral infection. Sci Transl Med 2013; 5: 203ra126.
    1. Suarez NM, Bunsow E, Falsey AR, et al. . Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults. J Infect Dis 2015; 212: 213–222. doi:10.1093/infdis/jiv047
    1. Tsalik EL, Henao R, Nichols M, et al. . Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 2016; 8: 322ra311. doi:10.1126/scitranslmed.aad6873
    1. Andres-Terre M, McGuire HM, Pouliot Y, et al. . Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity 2015; 43: 1199–1211. doi:10.1016/j.immuni.2015.11.003
    1. Rivers E, Nguyen B, Havstad S, et al. . Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368–1377. doi:10.1056/NEJMoa010307
    1. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign bundle: 2018 update. Crit Care Med 2018; 46: 997–1000. doi:10.1097/CCM.0000000000003119
    1. Seymour CW, Gesten F, Prescott HC, et al. . Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017; 376: 2235–2244. doi:10.1056/NEJMoa1703058
    1. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care 2011; 1: 1. doi:10.1186/2110-5820-1-1
    1. Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol 2008; 74: 123–135.
    1. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016; 29: 695–747. doi:10.1128/CMR.00102-15
    1. Walter JM, Wunderink RG. Severe respiratory viral infections: new evidence and changing paradigms. Infect Dis Clin North Am 2017; 31: 455–474. doi:10.1016/j.idc.2017.05.004
    1. . Mild/Moderate 2019-nCoV Remdesivir RCT. NCT04252664. Date last updated: 15 April 2020; date last accessed: 7 February 2020.
    1. . Severe 2019-nCoV Remdesivir RCT. NCT04257656. Date last updated15 April 2020; date last accessed: 7 February 2020.
    1. Alvarez-Lerma F, Marin-Corral J, Vila C, et al. . Delay in diagnosis of influenza A (H1N1)pdm09 virus infection in critically ill patients and impact on clinical outcome. Crit Care 2016; 20: 337. doi:10.1186/s13054-016-1512-1
    1. To KK, Hung IF, Li IW, et al. . Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection. Clin Infect Dis 2010; 50: 850–859. doi:10.1086/650581
    1. Ison MG, de Jong MD, Gilligan KJ, et al. . End points for testing influenza antiviral treatments for patients at high risk of severe and life-threatening disease. J Infect Dis 2010; 201: 1654–1662. doi:10.1086/652498
    1. Razonable RR. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 2011; 86: 1009–1026. doi:10.4065/mcp.2011.0309
    1. Annane D, Bellissant E, Bollaert PE, et al. . Corticosteroids for treating sepsis. Cochrane Database Syst Rev 2015: Cd002243.
    1. Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin Infect Dis 2002; 34: 1084–1093. doi:10.1086/339549
    1. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med 2014; 20: 195–203. doi:10.1016/j.molmed.2014.01.007
    1. Venkatesh B, Finfer S, Cohen J, et al. . Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018; 378: 797–808. doi:10.1056/NEJMoa1705835
    1. . Studying Complement Inhibition in Early, Newly Developing Septic Organ Dysfunction (SCIENS). NCT02246595. Date last updated: 25 April 2016; date last accessed: 31 January 2020.
    1. . Phase 3 Safety and Efficacy Study of ART-123 in Subjects With Severe Sepsis and Coagulopathy. NCT01598831. Date last updated: April 21 2020; date last accessed: 31 January 2020.
    1. Leentjens J, Kox M, van der Hoeven JG, et al. . Immunotherapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med 2013; 187: 1287–1293. doi:10.1164/rccm.201301-0036CP
    1. Leentjens J, Kox M, Koch RM, et al. . Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med 2012; 186: 838–845. doi:10.1164/rccm.201204-0645OC
    1. Kasten KR, Prakash PS, Unsinger J, et al. . Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through gamma delta T-cell IL-17 production in a murine model of sepsis. Infect Immun 2010; 78: 4714–4722. doi:10.1128/IAI.00456-10
    1. Hotchkiss RS, Colston E, Yende S, et al. . Immune checkpoint inhibition in sepsis: a Phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med 2019; 47: 632–642. doi:10.1097/CCM.0000000000003685
    1. Finfer S, Chittock DR, Su SY, et al. . Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283–1297. doi:10.1056/NEJMoa0810625
    1. Reignier J, Boisrame-Helms J, Brisard L, et al. . Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018; 391: 133–143. doi:10.1016/S0140-6736(17)32146-3
    1. Harvey SE, Parrott F, Harrison DA, et al. . A multicentre, randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES). Health Technol Assess 2016; 20: 1–144. doi:10.3310/hta20280
    1. Wang A, Huen SC, Luan HH, et al. . Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 2016; 166: 1512–1525. doi:10.1016/j.cell.2016.07.026

Source: PubMed

3
Abonner